바로가기메뉴

본문 바로가기 주메뉴 바로가기

logo

  • P-ISSN1226-0657
  • E-ISSN2287-6081
  • KCI

ON THE STABILITY OF THE MIXED TYPE FUNCTIONAL EQUATION IN RANDOM NORMED SPACES VIA FIXED POINT METHOD

Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics / Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics, (P)1226-0657; (E)2287-6081
2012, v.19 no.1, pp.59-71
https://doi.org/10.7468/jksmeb.2012.19.1.59
Jin, Sun-Sook
Lee, Yang-Hi

Abstract

In this paper, we prove the stability in random normed spaces via fixed point method for the functional equation <TEX>$$f(x+y+z)-f(x+y)-f(y+z)-f(x+z)+f(x)+f(y)+f(z)=0$$</TEX>. by using a fixed point theorem in the sense of L. C<TEX>$\breve{a}$</TEX>dariu and V. Radu.

keywords
stability, additive mapping, mixed type functional equation, random normed space

Reference

1.

(1950). On the stability of the linear transformation in Banach spaces. J. Math. Soc. Japan, 2, 64-66. 10.2969/jmsj/00210064.

2.

(1984). Remarks on the stability of functional equations. Aequationes Math., 27, 76-86. 10.1007/BF02192660.

3.

(1991). On stability of additive mappings. Internat. J. Math. Math. Sci., 14, 431-434. 10.1155/S016117129100056X.

4.

(1994). A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings. J. Math. Anal. Appl., 184, 431-436. 10.1006/jmaa.1994.1211.

5.

(1941). On the stability of the linear functional equation. Proc. Natl. Acad. Sci., 27, 222-224. 10.1073/pnas.27.4.222.

6.

A fixed point approach to the stability of the mixed type functional equation.

7.

(1998). On the Hyers-Ulam stability of the functional equations that have the quadratic property. J. Math. Anal. Appl., 222, 126-137. 10.1006/jmaa.1998.5916.

8.

(2006). On the stability problem for a mixed type of quartic and quadratic functional equation. J. Math. Anal. Appl., 324, 358-372. 10.1016/j.jmaa.2005.11.053.

9.

(2008). On the stability of the monomial functional equation. Bull. Korean Math. Soc., 45, 397-403. 10.4134/BKMS.2008.45.2.397.

10.

(1999). A generalization of the Hyers-Ulam-Rassias stability of Jensen's equation. J. Math. Anal. Appl., 238, 305-315. 10.1006/jmaa.1999.6546.

11.

(2000). A generalization of the Hyers-Ulam-Rassias stability of Pexider equation. J. Math. Anal. Appl., 246, 627-638. 10.1006/jmaa.2000.6832.

12.

(2000). On the stability of approximately additive mappings. Proc. Amer. Math. Soc., 128, 1361-1369. 10.1090/S0002-9939-99-05156-4.

13.

(1968). A fixed point theorem of the alternative for contractions on a generalized complete metric space. Bull. Amer. Math. Soc., 74, 305-309. 10.1090/S0002-9904-1968-11933-0.

14.

Principles and applications of fixed point theory.

15.

(2008). On the stability of the additive Cauchy functional equation in random normed spaces. J. Math. Anal. Appl., 343(1), 567-572. 10.1016/j.jmaa.2008.01.100.

16.

(2003). The fixed point alternative and the stability of functional equations. Sem. Fixed Point Theory, 4(1), 91-96.

17.

(1978). On the stability of the linear mapping in Banach spaces. Proc. Amer. Math. Soc., 72, 297-300. 10.1090/S0002-9939-1978-0507327-1.

18.

Probabilistic metric spaces. Noth-Holland Series in Probability and Applied Mathematics.

19.

(1963). On the motion of a random normed space. Dokl. Akad. Nauk SSSR, 149, 280-283.

20.

A collection of mathematical problems.

Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics