ISSN : 1226-0657
In this paper, we prove the stability in random normed spaces via fixed point method for the functional equation <TEX>$$f(x+y+z)-f(x+y)-f(y+z)-f(x+z)+f(x)+f(y)+f(z)=0$$</TEX>. by using a fixed point theorem in the sense of L. C<TEX>$\breve{a}$</TEX>dariu and V. Radu.
(1950). On the stability of the linear transformation in Banach spaces. J. Math. Soc. Japan, 2, 64-66. 10.2969/jmsj/00210064.
(1984). Remarks on the stability of functional equations. Aequationes Math., 27, 76-86. 10.1007/BF02192660.
(1991). On stability of additive mappings. Internat. J. Math. Math. Sci., 14, 431-434. 10.1155/S016117129100056X.
(1994). A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings. J. Math. Anal. Appl., 184, 431-436. 10.1006/jmaa.1994.1211.
(1941). On the stability of the linear functional equation. Proc. Natl. Acad. Sci., 27, 222-224. 10.1073/pnas.27.4.222.
A fixed point approach to the stability of the mixed type functional equation.
(1998). On the Hyers-Ulam stability of the functional equations that have the quadratic property. J. Math. Anal. Appl., 222, 126-137. 10.1006/jmaa.1998.5916.
(2006). On the stability problem for a mixed type of quartic and quadratic functional equation. J. Math. Anal. Appl., 324, 358-372. 10.1016/j.jmaa.2005.11.053.
(2008). On the stability of the monomial functional equation. Bull. Korean Math. Soc., 45, 397-403. 10.4134/BKMS.2008.45.2.397.
(1999). A generalization of the Hyers-Ulam-Rassias stability of Jensen's equation. J. Math. Anal. Appl., 238, 305-315. 10.1006/jmaa.1999.6546.
(2000). A generalization of the Hyers-Ulam-Rassias stability of Pexider equation. J. Math. Anal. Appl., 246, 627-638. 10.1006/jmaa.2000.6832.
(2000). On the stability of approximately additive mappings. Proc. Amer. Math. Soc., 128, 1361-1369. 10.1090/S0002-9939-99-05156-4.
(1968). A fixed point theorem of the alternative for contractions on a generalized complete metric space. Bull. Amer. Math. Soc., 74, 305-309. 10.1090/S0002-9904-1968-11933-0.
Principles and applications of fixed point theory.
(2008). On the stability of the additive Cauchy functional equation in random normed spaces. J. Math. Anal. Appl., 343(1), 567-572. 10.1016/j.jmaa.2008.01.100.
(2003). The fixed point alternative and the stability of functional equations. Sem. Fixed Point Theory, 4(1), 91-96.
(1978). On the stability of the linear mapping in Banach spaces. Proc. Amer. Math. Soc., 72, 297-300. 10.1090/S0002-9939-1978-0507327-1.
Probabilistic metric spaces. Noth-Holland Series in Probability and Applied Mathematics.
(1963). On the motion of a random normed space. Dokl. Akad. Nauk SSSR, 149, 280-283.
A collection of mathematical problems.