바로가기메뉴

본문 바로가기 주메뉴 바로가기

logo

h¡STABILITY OF NONLINEAR PERTURBED DIFFERENTIAL SYSTEMS VIA t1-SIMILARITY

Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics / Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics, (P)1226-0657; (E)2287-6081
2012, v.19 no.2, pp.171-177
https://doi.org/10.7468/jksmeb.2012.19.2.171
Goo, Yoon-Hoe
Yang, Seung-Bum
  • Downloaded
  • Viewed

Abstract

The main purpose of this paper is to investigate <TEX>$h$</TEX>-stability of the nonlinear perturbed differential systems using the notion of <TEX>$t_{\infty}$</TEX>-similarity. As results, we generalize some previous <TEX>$h$</TEX>-stability results on this topic.

keywords
h-system, h-stability, <tex> $t_{\infty}$</tex>-similarity, nonlinear nonautonomous system

Reference

1.

(1961). An estimate for the perturbations of the solutions of ordinary differential equations. Vestn. Mosk. Univ. Ser. I. Math. Mech., 2, 28-36.

2.

(1992). Lipschitz stability and exponential asymptotic stability in perturbed systems. J. Korean Math. Soc., 29, 175-190.

3.

(1993). h-stability in differential systems. Bull. Inst. Math. Acad. Sinica, 21, 245-262.

4.

(1997). h-stability of differential systems via <TEX>$t_{\infty}$</TEX>-similarity. Bull. Korean. Math. Soc., 34, 371-383.

5.

(1957). Sulla <TEX>$t_{\infty}$</TEX>-similitudine tra matricie l'equivalenza asintotica dei sistemi differenziali lineari. Rivista di Mat. Univ. Parma, 8, 43-47.

6.

(2010). h-stability of the nonlinear differential systems via <TEX>$t_{\infty}$</TEX>-similarity. J. Chungcheong Math. Soc., 23, 383-389.

7.

(2010). h-stability of the nonlinear perturbed differential systems. J. Chungcheong Math. Soc., 23, 827-834.

8.

(2011). h-stability of the nonlinear perturbed differential systems via <TEX>$t_{\infty}$</TEX>-similarity. J. Chungcheong Math. Soc., 24, 695-702.

9.

(2011). h-stability of perturbed differential systems. J. Korean Soc. Math. Edu. Ser. B: Pure Appl. Math., 18, 337-344.

10.

(1973). Stability properties of the equation by <TEX>$t_{\infty}$</TEX>-similarity. J. Math. Anal. Appl., 41, 336-344. 10.1016/0022-247X(73)90209-6.

11.

Differential and Integral Inequalities: Theory and Applications Vol. I.

12.

(1973). A note on Gronwall-Bellman inequality. J. Math. Anal. Appl., 44, 758-762. 10.1016/0022-247X(73)90014-0.

13.

(1984). Perturbations of asymptotically stable differential systems. Analysis, 4, 161-175.

14.

(1988). Asymptotic integration of a system resulting from the perturbation of an h-system. J. Math. Anal. Appl., 131, 194-216. 10.1016/0022-247X(88)90200-4.

15.

(1992). Stability of nonlinear differential systems. Applicable Analysis, 43, 1-20. 10.1080/00036819208840049.

Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics