바로가기메뉴

본문 바로가기 주메뉴 바로가기

ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

logo

  • P-ISSN1226-0657
  • E-ISSN2287-6081
  • KCI

APPROXIMATE PEXIDERIZED EXPONENTIAL TYPE FUNCTIONS

APPROXIMATE PEXIDERIZED EXPONENTIAL TYPE FUNCTIONS

한국수학교육학회지시리즈B:순수및응용수학 / Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics, (P)1226-0657; (E)2287-6081
2012, v.19 no.2, pp.193-198
https://doi.org/10.7468/jksmeb.2012.19.2.193
Lee, Young-Whan (Department of Computer Hacking and Information Security, College of Natural Science, Daejeon University)

Abstract

We show that every unbounded approximate Pexiderized exponential type function has the exponential type. That is, we obtain the superstability of the Pexiderized exponential type functional equation <TEX>$$f(x+y)=e(x,y)g(x)h(y)$$</TEX>. From this result, we have the superstability of the exponential functional equation <TEX>$$f(x+y)=f(x)f(y)$$</TEX>.

keywords
functional equation, stability, superstability, gamma and beta functional equation, Cauchy functional equation, exponential functional equation

참고문헌

1.

(1980). The stability of the cosine equations. Proc. Amer. Math. Soc., 80, 411-416. 10.1090/S0002-9939-1980-0580995-3.

2.

(1979). The stability of the equation f(x + y) = f(x) + f(y). Proc. Amer. Math. Soc., 74, 242-246.

3.

(1995). Hyers-Ulam stability of functional equations in several variables. Aequationes Math., 50, 146-190.

4.

(1993). Superstability is not natural. Rocznik Naukowo-Dydaktyczny WSP Krakkowie. Prace Mat., 159, 109-123.

5.

(1941). On the stability of the linear functional equation. Proc. Natl. Acad. Sci., 27, 222-224. 10.1073/pnas.27.4.222.

6.

(1992). Approximate homomorphisms. Aequatioues Math., 44, 125-153. 10.1007/BF01830975.

7.

Stability of functional equations in several variables.

8.

(2000). Stability of generalized gamma and beta functional equations. Aequationes Math., 60, 15-24. 10.1007/s000100050132.

9.

(1997). On the general Hyers-Ulam stability of gamma functional equation. Bull. Korean Math. Soc., 34(3), 437-446.

10.

(2009). Approximate gamma-beta type functions. Nonlinear Analysis, 71, e1567-e1574. 10.1016/j.na.2009.01.206.

11.

(2000). The stability of the beta functional equation. Babes-Bolyai Mathematica, XLV(1), 89-96.

12.

(2002). On the stability of a quadratic Jensen type functional equation. J. Math. Anal. Appl., 270, 590-601. 10.1016/S0022-247X(02)00093-8.

13.

(2000). The stability of derivations on Banach algebras. Bull. Institute of Math. Academia Sinica, 28, 113-116.

14.

(2010). Superstability and stability of the pexiderized multiplicative functional equation. J. Inequal. and Appl., , 1-15.

15.

(1978). On the stability of the linear mapping in Banach spaces. Proc. Amer. Math. Soc., 72, 297-300. 10.1090/S0002-9939-1978-0507327-1.

16.

(2000). The problem of S.M. Ulam for approximately multiplication mappings. J. Math. Anal. Appl., 246, 352-378. 10.1006/jmaa.2000.6788.

17.

(1964). Problems in Modern Mathematics . Proc..

한국수학교육학회지시리즈B:순수및응용수학