ISSN : 1226-0657
We show that every unbounded approximate Pexiderized exponential type function has the exponential type. That is, we obtain the superstability of the Pexiderized exponential type functional equation <TEX>$$f(x+y)=e(x,y)g(x)h(y)$$</TEX>. From this result, we have the superstability of the exponential functional equation <TEX>$$f(x+y)=f(x)f(y)$$</TEX>.
(1980). The stability of the cosine equations. Proc. Amer. Math. Soc., 80, 411-416. 10.1090/S0002-9939-1980-0580995-3.
(1979). The stability of the equation f(x + y) = f(x) + f(y). Proc. Amer. Math. Soc., 74, 242-246.
(1995). Hyers-Ulam stability of functional equations in several variables. Aequationes Math., 50, 146-190.
(1993). Superstability is not natural. Rocznik Naukowo-Dydaktyczny WSP Krakkowie. Prace Mat., 159, 109-123.
(1941). On the stability of the linear functional equation. Proc. Natl. Acad. Sci., 27, 222-224. 10.1073/pnas.27.4.222.
(1992). Approximate homomorphisms. Aequatioues Math., 44, 125-153. 10.1007/BF01830975.
Stability of functional equations in several variables.
(2000). Stability of generalized gamma and beta functional equations. Aequationes Math., 60, 15-24. 10.1007/s000100050132.
(1997). On the general Hyers-Ulam stability of gamma functional equation. Bull. Korean Math. Soc., 34(3), 437-446.
(2009). Approximate gamma-beta type functions. Nonlinear Analysis, 71, e1567-e1574. 10.1016/j.na.2009.01.206.
(2000). The stability of the beta functional equation. Babes-Bolyai Mathematica, XLV(1), 89-96.
(2002). On the stability of a quadratic Jensen type functional equation. J. Math. Anal. Appl., 270, 590-601. 10.1016/S0022-247X(02)00093-8.
(2000). The stability of derivations on Banach algebras. Bull. Institute of Math. Academia Sinica, 28, 113-116.
(2010). Superstability and stability of the pexiderized multiplicative functional equation. J. Inequal. and Appl., , 1-15.
(1978). On the stability of the linear mapping in Banach spaces. Proc. Amer. Math. Soc., 72, 297-300. 10.1090/S0002-9939-1978-0507327-1.
(2000). The problem of S.M. Ulam for approximately multiplication mappings. J. Math. Anal. Appl., 246, 352-378. 10.1006/jmaa.2000.6788.
(1964). Problems in Modern Mathematics . Proc..