바로가기메뉴

본문 바로가기 주메뉴 바로가기

logo

  • P-ISSN1226-0657
  • E-ISSN2287-6081
  • KCI

A NOTE ON SPECIAL LAGRANGIANS OF COTANGENT BUNDLES OF SPHERES

Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics / Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics, (P)1226-0657; (E)2287-6081
2012, v.19 no.3, pp.239-249
https://doi.org/10.7468/jksmeb.2012.19.3.239
Lee, Jae-Hyouk

Abstract

For each submanifold X in the sphere <TEX>$S^n$</TEX>; we show that the corresponding conormal bundle <TEX>$N^*X$</TEX> is Lagrangian for the Stenzel form on <TEX>$T^*S^n$</TEX>. Furthermore, we correspond an austere submanifold X to a special Lagrangian submanifold <TEX>$N^*X$</TEX> in <TEX>$T^*S^n$</TEX>. We also discuss austere submanifolds in <TEX>$S^n$</TEX> from isoparametric geometry.

keywords
special Lagrangians, cotangent bundle, Stenzel metric

Reference

1.

(1983). Isoparametric hypersurfaces with four or six distinct principal curvatures. Necessary conditions on the multiplicities. Math. Ann., 264(3), 283-302. 10.1007/BF01459125.

2.

(2007). Special Lagrangian submanifolds in the complex sphere. Ann. Fac. Sci. Toulouse Math. (6), 16(2), 215-227. 10.5802/afst.1145.

3.

(2004). Minimal Legendrian submanifolds of <TEX>$S^{2n+1}$</TEX>and absolutely area-minimizing cones. Differential Geom. Appl., 21(3), 337-347. 10.1016/j.difgeo.2004.05.007.

4.

(1979). Meriques Kahleriennes et fibres holomorphes. Ann. Ec. Norm. Sup., 12, 269-294.

5.

(1985). Isoparametric hypersurfaces, case g=6,m=1. Comm. Algebra, 13(11), 2299-2368. 10.1080/00927878508823278.

6.

(1982). Calibrated geometries. Acta Math., 148, 47-157. 10.1007/BF02392726.

7.

(1971). Minimal submanifolds of low cohomogeneity. J. Differential Geometry, 5, 1-38.

8.

(1992). Hyperkahler manifolds (137-166). Seminaire Bourbaki, Asterisque.

9.

Cohomogeneity One Special Lagrangian Submanifolds in the Deformed Conifold.

10.

(2005). A generalization of Cartan hypersurfaces (51-59). Proceedings of the Ninth International Workshop on Differential Geometry.

11.

(2005). Calibrated subbundles in noncompact manifolds of special holonomy. Ann. Global Anal. Geom., 28(4), 371-394. 10.1007/s10455-005-1940-7.

12.

(0000). Special Lagragnian Submanifolds in Cotangent Bundles. On progresss, .

13.

A new proof of the homogeneity of isoparametric hypersurfaces with (g;m) = (6; 1). Geometry and topology of submanifolds, X (Beijing/Berlin, 1999).

14.

(1993). Ricci-flat metrics on the complexi¯cation of a compact rank one symmetric space. Manuscripta Math., 80(2), 151-163. 10.1007/BF03026543.

15.

(1991). Complex structures on tangent bundles of Riemannian manifolds. Math. Ann., 291, 409-428. 10.1007/BF01445217.

Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics