ISSN : 1226-0657
For each submanifold X in the sphere <TEX>$S^n$</TEX>; we show that the corresponding conormal bundle <TEX>$N^*X$</TEX> is Lagrangian for the Stenzel form on <TEX>$T^*S^n$</TEX>. Furthermore, we correspond an austere submanifold X to a special Lagrangian submanifold <TEX>$N^*X$</TEX> in <TEX>$T^*S^n$</TEX>. We also discuss austere submanifolds in <TEX>$S^n$</TEX> from isoparametric geometry.
(1983). Isoparametric hypersurfaces with four or six distinct principal curvatures. Necessary conditions on the multiplicities. Math. Ann., 264(3), 283-302. 10.1007/BF01459125.
(2007). Special Lagrangian submanifolds in the complex sphere. Ann. Fac. Sci. Toulouse Math. (6), 16(2), 215-227. 10.5802/afst.1145.
(2004). Minimal Legendrian submanifolds of <TEX>$S^{2n+1}$</TEX>and absolutely area-minimizing cones. Differential Geom. Appl., 21(3), 337-347. 10.1016/j.difgeo.2004.05.007.
(1979). Meriques Kahleriennes et fibres holomorphes. Ann. Ec. Norm. Sup., 12, 269-294.
(1985). Isoparametric hypersurfaces, case g=6,m=1. Comm. Algebra, 13(11), 2299-2368. 10.1080/00927878508823278.
(1982). Calibrated geometries. Acta Math., 148, 47-157. 10.1007/BF02392726.
(1971). Minimal submanifolds of low cohomogeneity. J. Differential Geometry, 5, 1-38.
(1992). Hyperkahler manifolds (137-166). Seminaire Bourbaki, Asterisque.
Cohomogeneity One Special Lagrangian Submanifolds in the Deformed Conifold.
(2005). A generalization of Cartan hypersurfaces (51-59). Proceedings of the Ninth International Workshop on Differential Geometry.
(2005). Calibrated subbundles in noncompact manifolds of special holonomy. Ann. Global Anal. Geom., 28(4), 371-394. 10.1007/s10455-005-1940-7.
(0000). Special Lagragnian Submanifolds in Cotangent Bundles. On progresss, .
A new proof of the homogeneity of isoparametric hypersurfaces with (g;m) = (6; 1). Geometry and topology of submanifolds, X (Beijing/Berlin, 1999).
(1993). Ricci-flat metrics on the complexi¯cation of a compact rank one symmetric space. Manuscripta Math., 80(2), 151-163. 10.1007/BF03026543.
(1991). Complex structures on tangent bundles of Riemannian manifolds. Math. Ann., 291, 409-428. 10.1007/BF01445217.