ISSN : 1226-0657
In this paper, we construct an extension (<TEX>$kX$</TEX>, <TEX>$k_X$</TEX>) of a space X such that <TEX>$kX$</TEX> is a weakly Lindel<TEX>$\ddot{o}$</TEX>ff space and for any continuous map <TEX>$f:X{\rightarrow}Y$</TEX>, there is a continuous map <TEX>$g:kX{\rightarrow}kY$</TEX> such that <TEX>$g|x=f$</TEX>. Moreover, we show that <TEX>${\upsilon}X$</TEX> is Lindel<TEX>$\ddot{o}$</TEX>ff if and only if <TEX>$kX={\upsilon}X$</TEX> and that for any P'-space X which is weakly Lindel<TEX>$\ddot{o}$</TEX>ff, <TEX>$kX={\upsilon}X$</TEX>.
(1979). Complete bases and Wallman realcompactifications. Proc. Amer. Math. Soc., 75, 114-118. 10.1090/S0002-9939-1979-0529226-2.
(1989). Complete bases in topological spaces II. Studia Sci. Math. Hung., 24, 447-452.
Rings of continuous functions.
(2003). Almost P-spaces. Commun. Korean Math. Soc., 18, 695-701. 10.4134/CKMS.2003.18.4.695.
Extensions and Absolutes of Hausdorff Spaces.
(1973). P'-points, P0-sets, P'-spaces. A new class of order-continuous measures and functionals. Soviet Math. Dokl., 14, 1445-1450.