ISSN : 1226-0657
We give some properties of weak Bloch functions and also give some properties of <TEX>${\phi}$</TEX>-uniform domains and <TEX>${\phi}$</TEX>-John domains in terms of moduli of continuity of Bloch functions and weak Bloch functions.
(2001). Uniformizing Gromov hyperbolic spaces. Asteroque, 270.
Geometry of John disks.
(1989). Quasihyperbolic geodesics in John domains. Math. Scand., 65, 75-92.
(1985). Lipschitz classes and quasiconformal mappings. Ann. Acad. Sci. Fenn. Math., 10, 203-219. 10.5186/aasfm.1985.1022.
(1979). Uniform domains and the quasi-hyperbolic metric. J. Analyse Math., 36, 50-74. 10.1007/BF02798768.
(1976). Quasiconformal homogeneous domains. J. Analyse Math., 30, 172-199. 10.1007/BF02786713.
(1988). Positive harmonic functions in uniform and admissible domains. Analysis, 8, 187-206.
(2007). Notes on the moduli of continuity of conjugate harmonic functions in domains. The Bulletin of Natural Science, Silla Univ., 16, 31-34.
(2012). Inner uniform domains, the quasihyperbolic metric and weak Bloch functions. Bull. Korean Math. Soc., 49(1), 11-24. 10.4134/BKMS.2012.49.1.011.
(1998). The quasihyperbolic metric, growth and John domains. Ann. Acad. Sci. Fenn. Math., 23, 205-224.
(1998). Relatively and inner uniform domains. Conformal Geom. Dynam., 2, 56-88. 10.1090/S1088-4173-98-00022-8.