바로가기메뉴

본문 바로가기 주메뉴 바로가기

ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

logo

  • P-ISSN1226-0657
  • E-ISSN2287-6081
  • KCI

COMMON COUPLED FIXED FOINT THEOREMS FOR NONLINEAR CONTRACTIVE CONDITION ON INTUITIONISTIC FUZZY METRIC SPACES WITH APPLICATION TO INTEGRAL EQUATIONS

COMMON COUPLED FIXED FOINT THEOREMS FOR NONLINEAR CONTRACTIVE CONDITION ON INTUITIONISTIC FUZZY METRIC SPACES WITH APPLICATION TO INTEGRAL EQUATIONS

한국수학교육학회지시리즈B:순수및응용수학 / Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics, (P)1226-0657; (E)2287-6081
2013, v.20 no.3, pp.159-180
https://doi.org/10.7468/jksmeb.2013.20.3.159
Deshpande, Bhavana (Department of Mathematics, Govt. Arts & Science P.G. College)
Sharma, Sushil (Department of Mathematics, Govt. P. G. Madhav Science College)
Handa, Amrish (Department of Mathematics, Govt. P. G. Arts and Science College)

Abstract

We establish a common fixed point theorem for mappings under <TEX>${\phi}$</TEX>-contractive conditions on intuitionistic fuzzy metric spaces. As an application of our result we study the existence and uniqueness of the solution to a nonlinear Fredholm integral equation. We also give an example to validate our result.

keywords
coupled coincidence point, coupled fixed point, intuitionistic fuzzy metric space, compatible mappings

참고문헌

1.

(2006). Fixed point in intuitionistic fuzzy metric spaces. Chaos Solitons and Fractals, 29(5), 1073-1078. 10.1016/j.chaos.2005.08.066.

2.

(1986). Intuitionistic fuzzy sets. Fuzzy sets and systems, 20, 87-96. 10.1016/S0165-0114(86)80034-3.

3.

Intuitionistic fuzzy sets;VII ITKR's Session, Sofia June, (1983).

4.

(2006). Fixed point theorems in partially ordered metric spaces and applications. Nonlinear Anal., 65(7), 1379-1393. 10.1016/j.na.2005.10.017.

5.

(2012). Coupled Fixed point theorem for weakly compatible mappings in intuitionistic fuzzy metric spaces. International Journal of Computer Applications (0975-8887), 50(23), 28-32.

6.

Fixed Point Theory in Probabilistic Metric Spaces. Mathematics and its Applications 536.

7.

(1975). Fuzzy metric and statistical metric spaces. Kybernetika, 11, 336-344.

8.

(2009). Coupled fixed point theorems for nonlinear contrac- tions in partially ordered metric spaces. Nonlinear Analysis. Theory, Method and Applications, 70(12), 4341-4349. 10.1016/j.na.2008.09.020.

9.

(1942). Statistical metric. Proc. Natl. Acad. Sci., 28, 535-537. 10.1073/pnas.28.12.535.

10.

(2004). Intuitionistic fuzzy metric spaces. Chaos Solitons and Fractals, 22, 1039-1046. 10.1016/j.chaos.2004.02.051.

11.

(1960). Statistical metric spaces. Pacific J. Math., 10, 314-334.

12.

(2010). Coupled fixed point theorems for contractions in fuzzy metric spaces. Nonlinear Analysis. Theory, Methods and Applications, 72(3-4), 1298-1304. 10.1016/j.na.2009.08.018.

13.

(2008). Common fixed theorems in intuitionistic fuzzy metric spaces and L-fuzzy metric spaces with nonlinear contractive condition. Chaos Solitons and Fractals, 37, 675-687. 10.1016/j.chaos.2006.09.048.

14.

(2011). Common coupled fixed point theorems for contractive mappings in fuzzy metric spaces, Hindawi Publishing Corporation. Fixed Point Theory and Applications, 2011, 14. 10.1186/1687-1812-2011-14.

15.

(2009). Common fixed point theorems of compatible and weakly compatible maps in Menger spaces. Nonlinear Analysis. Theory, Methods and Applications, 71(5-6), 1833-1843. 10.1016/j.na.2009.01.018.

16.

(1994). On some results in fuzzy metric spaces. Fuzzy Sets and Systems, 64, 395-399. 10.1016/0165-0114(94)90162-7.

한국수학교육학회지시리즈B:순수및응용수학