바로가기메뉴

본문 바로가기 주메뉴 바로가기

logo

  • P-ISSN1226-0657
  • E-ISSN2287-6081
  • KCI

INTERSECTION-SOFT IDEALS IN CI-ALGEBRAS

Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics / Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics, (P)1226-0657; (E)2287-6081
2014, v.21 no.2, pp.105-112
https://doi.org/10.7468/jksmeb.2014.21.2.105
Ko, Jung Mi
Kim, Yong Chan
Song, Seok Zun

Abstract

The notion of intersection-soft ideal of CI-algebras is introduced, and related properties are investigated. A characterization of an intersection-soft ideal is provided, and a new intersection-soft ideal from the old one is established.

keywords
CI-algebra, ideal, intersection-soft ideal, inclusive ideal

Reference

1.

U. Hohle & E.P. Klement. Non-classical logic and their applications to fuzzy subsets.

2.

K.H. Kim. (2011). A note on CI-algebras. Int. Math. Forum, 6(1), 1-5.

3.

H.S. Kim & Y.H. Kim. (2007). On BE-algerbas. Sci. Math. Jpn., 66(1), 113-116.

4.

K.J. Lee. (0000). Int-soft filters in CI-algebras. Far East J. Math. Sci. (FJMS), .

5.

B.L. Meng. (2010). CI-algebras. Sci. Math. Jpn., 71(1), 11-17.

6.

D. Molodtsov. (1999). Soft set theory - First results. Comput. Math. Appl., 37, 19-31.

7.

Z. Pawlak. (1982). Rough sets. Int. J. Comput. Inf. Sci., 11, 341-356. 10.1007/BF01001956.

8.

Z. Pawlak. (1984). Rough probability. Bull. Pol. Acad. Sci. Math., 32, 607-615.

9.

E. Turunen. Mathematics Behind Fuzzy Logic.

10.

R. Belohlavek. Fuzzy Relational Systems.

11.

R. Belohlavek. (2004). Concept lattices and order in fuzzy logic. Ann. Pure Appl. Logic, 128, 277-298. 10.1016/j.apal.2003.01.001.

12.

P. Hajek. Metamathematices of Fuzzy Logic.

Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics