ISSN : 1226-0657
In this paper, we study the existence of positive solutions for singular impulsive differential equations with integral boundary conditions <TEX>$$\{u^{{\prime}{\prime}}(t)+q(t)f(t,u(t),u^{\prime}(t))=0,\;t{\in}\mathbb{J}^{\prime},\\{\Delta}u(t_k)=I_k(u(t_k),u^{\prime}(t_k)),\;k=1,2,{\cdots},p,\\{\Delta}u^{\prime}(t_k)=-L_k(u(t_k),u^{\prime}(t_k)),\;k=1,2,{\cdots},p,\\u=(0)={\int}_{0}^{1}g(t)u(t)dt,\;u^{\prime}=0,$$</TEX>) where the nonlinearity f(t, u, v) may be singular at v = 0. The proof is based on the theory of Leray-Schauder degree, together with a truncation technique. Some recent results in the literature are generalized and improved.
R.P. Agarwal & D. O'Regan. (2000). Multiple nonnegative solutions for second-order impulsive differential equations. Appl. Math. Comput., 114, 51-59. 10.1016/S0096-3003(99)00074-0.
R.P. Agarwal, D. Franco & D. O'Regan. (2005). Singular boundary value problems for first and second order impulsive di'erential equations. Aequationes Math., 69, 83-96. 10.1007/s00010-004-2735-9.
J. Chu & J.J. Nieto. (2008). Impulsive periodic solutions of first-order singular differential equations. Bull. London Math. Soc., 40(1), 143-150. 10.1112/blms/bdm110.
M. Choisy & J.F. Guegan & P. Rohani. (2006). Dynamics of infectious deseases and pulse vaccination: teasing apart the embedded resonance effects. Phys. D., 223, 26-35. 10.1016/j.physd.2006.08.006.
A. D'Onofrio. (2005). On pulse vaccination strategy in the SIR epidemic model with vertical transmission. Appl. Math. Lett., 18, 729-732. 10.1016/j.aml.2004.05.012.
M.Q. Feng & D.X. Xie. (2009). Multiple positive solutions of multi-point boundary value problem for second-order impulsive differential equations. J. Comput. Appl. Math., 223, 438-448. 10.1016/j.cam.2008.01.024.
M.Q. Feng, B. Du & W.G. Ge. (2009). Impulsive boundary value problems with integral boundary conditions and one-dimensional p-Laplacian. Nonlinear Anal., 70, 3119-3126. 10.1016/j.na.2008.04.015.
T. Jankowski. (2008). Positive solutions of three-point boundary value problems for second order impulsive differential equations with advanced arguments. Appl. Math. Comput., 197, 179-189. 10.1016/j.amc.2007.07.081.
R.K. George & A.K. Nandakumaran & A. Arapostathis. (2000). A note on contrability of impulsive systems. J. Math. Anal. Appl., 241, 276-283. 10.1006/jmaa.1999.6632.
G. Jiang & Q. Lu. (2007). Impulsive state feedback control of a predator-prey model. J. Comput. Appl. Math., 200, 193-207. 10.1016/j.cam.2005.12.013.
D.Q. Jiang, J.F. Chu & Y. He. (2007). Multiple positive solutions of Sturm-Liouville problems for second order impulsive differential equations. Dynam. Systems Appl., 16, 611-624.
T. Jankowski. (2008). Positive solutions to second order four-point boundary value problems for impulsive differential equations. Appl. Math. Comput., 202, 550-561. 10.1016/j.amc.2008.02.040.
X. Lin & D. Jiang. (2006). Multiple positive solutions of Dirichlet boundary value problems for second-order impulsive differential equations. J. Math. Anal. Appl., 321, 501-514. 10.1016/j.jmaa.2005.07.076.
V. Lakshmikantham, D.D. Bainov & P. S. Simeonov. Theory of Impulsive Differential Equations.
E.K. Lee & Y.H. Lee. (2004). Multiple positive solutions of singular two point boundary value problems for second-order impulsive differential equations. Appl. Math. Comput., 158, 745-759. 10.1016/j.amc.2003.10.013.
Y.H. Lee & X.Z. Liu. (2007). Study of singular boundary value problems for second order impulsive differential equations. J. Math. Anal. Appl., 331, 159-176. 10.1016/j.jmaa.2006.07.106.
S.H. Liang & J.H. Zhang. (2009). The existence of countably many positive solutions for some nonlinear singular three-point impulsive boundary value problems. Nonlinear Anal., 71, 4588-4597. 10.1016/j.na.2009.03.016.
C.M. Miao, W.G Ge & J. Zhang. (2009). A singular boundary value problem with integral boundary condition for a first-order impulsive differential equation. (Chinese) Mathematics in Practice and Theory, 39(15), 182-186.
J.J. Nieto. (1997). Basic theory for nonresonance impulsive periodic problems of first order. J. Math. Anal. Appl., 205(2), 423-433. 10.1006/jmaa.1997.5207.
S. Nenov. (1999). Impulsive controllability and optimization problems in population dynamics. Nonlinear Anal., 36, 881-890. 10.1016/S0362-546X(97)00627-5.
J.J. Nieto & D. O'Regan. (2009). Variational approach to impulsive differential equations. Nonlinear Anal. RWA, 10, 680-690. 10.1016/j.nonrwa.2007.10.022.
J.J. Nieto. (2010). Variational formulation of a damped Dirichlet impulsive problem. Appl. Math. Lett., 23, 940-942. 10.1016/j.aml.2010.04.015.
I. Rachunkova & J. Tomecek. (2006). Singular Dirichlet problem for ordinary differential equation with impulses. Nonlinear Anal., 65, 210-229. 10.1016/j.na.2005.09.016.
Y. Tian & W.G. Ge. (2010). Variational methods to Sturm-Liouville boundary value problem for impulsive differential equations. Nonlinear Anal., 72, 277-287. 10.1016/j.na.2009.06.051.
Y. Tian & W.G. Ge. (2012). Multiple solutions of impulsive Sturm-Liouville boundary value problem via lower and upper solutions and variational methods. J. Math. Anal. Appl., 387, 475-489. 10.1016/j.jmaa.2011.08.042.
J.F. Xu, D. O'Regan & Z.L. Yang. (2014). Positive Solutions for a nth-Order Impulsive Differential Equation with Integral Boundary Conditions. Differ Equ Dyn Syst., 22, 427-439. 10.1007/s12591-013-0176-4.