바로가기메뉴

본문 바로가기 주메뉴 바로가기

ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

logo

  • P-ISSN1226-0657
  • E-ISSN2287-6081
  • KCI

EXISTENCE OF POSITIVE SOLUTIONS FOR SINGULAR IMPULSIVE DIFFERENTIAL EQUATIONS WITH INTEGRAL BOUNDARY CONDITIONS

EXISTENCE OF POSITIVE SOLUTIONS FOR SINGULAR IMPULSIVE DIFFERENTIAL EQUATIONS WITH INTEGRAL BOUNDARY CONDITIONS

한국수학교육학회지시리즈B:순수및응용수학 / Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics, (P)1226-0657; (E)2287-6081
2014, v.21 no.3, pp.147-163
https://doi.org/10.7468/jksmeb.2014.21.3.147
Miao, Chunmei (School of Mathematics and Statistics, Northeast Normal University)
Ge, Weigao (School of Mathematics, Beijing Institute of Technology)
Zhang, Zhaojun (School of Science, Changchun University)

Abstract

In this paper, we study the existence of positive solutions for singular impulsive differential equations with integral boundary conditions <TEX>$$\{u^{{\prime}{\prime}}(t)+q(t)f(t,u(t),u^{\prime}(t))=0,\;t{\in}\mathbb{J}^{\prime},\\{\Delta}u(t_k)=I_k(u(t_k),u^{\prime}(t_k)),\;k=1,2,{\cdots},p,\\{\Delta}u^{\prime}(t_k)=-L_k(u(t_k),u^{\prime}(t_k)),\;k=1,2,{\cdots},p,\\u=(0)={\int}_{0}^{1}g(t)u(t)dt,\;u^{\prime}=0,$$</TEX>) where the nonlinearity f(t, u, v) may be singular at v = 0. The proof is based on the theory of Leray-Schauder degree, together with a truncation technique. Some recent results in the literature are generalized and improved.

keywords
singular impulsive diffrential equations, integral boundary conditions, positive solutions, Leray-Schauder degree

참고문헌

1.

R.P. Agarwal & D. O'Regan. (2000). Multiple nonnegative solutions for second-order impulsive differential equations. Appl. Math. Comput., 114, 51-59. 10.1016/S0096-3003(99)00074-0.

2.

R.P. Agarwal, D. Franco & D. O'Regan. (2005). Singular boundary value problems for first and second order impulsive di'erential equations. Aequationes Math., 69, 83-96. 10.1007/s00010-004-2735-9.

3.

J. Chu & J.J. Nieto. (2008). Impulsive periodic solutions of first-order singular differential equations. Bull. London Math. Soc., 40(1), 143-150. 10.1112/blms/bdm110.

4.

M. Choisy & J.F. Guegan & P. Rohani. (2006). Dynamics of infectious deseases and pulse vaccination: teasing apart the embedded resonance effects. Phys. D., 223, 26-35. 10.1016/j.physd.2006.08.006.

5.

A. D'Onofrio. (2005). On pulse vaccination strategy in the SIR epidemic model with vertical transmission. Appl. Math. Lett., 18, 729-732. 10.1016/j.aml.2004.05.012.

6.

M.Q. Feng & D.X. Xie. (2009). Multiple positive solutions of multi-point boundary value problem for second-order impulsive differential equations. J. Comput. Appl. Math., 223, 438-448. 10.1016/j.cam.2008.01.024.

7.

M.Q. Feng, B. Du & W.G. Ge. (2009). Impulsive boundary value problems with integral boundary conditions and one-dimensional p-Laplacian. Nonlinear Anal., 70, 3119-3126. 10.1016/j.na.2008.04.015.

8.

T. Jankowski. (2008). Positive solutions of three-point boundary value problems for second order impulsive differential equations with advanced arguments. Appl. Math. Comput., 197, 179-189. 10.1016/j.amc.2007.07.081.

9.

R.K. George & A.K. Nandakumaran & A. Arapostathis. (2000). A note on contrability of impulsive systems. J. Math. Anal. Appl., 241, 276-283. 10.1006/jmaa.1999.6632.

10.

G. Jiang & Q. Lu. (2007). Impulsive state feedback control of a predator-prey model. J. Comput. Appl. Math., 200, 193-207. 10.1016/j.cam.2005.12.013.

11.

D.Q. Jiang, J.F. Chu & Y. He. (2007). Multiple positive solutions of Sturm-Liouville problems for second order impulsive differential equations. Dynam. Systems Appl., 16, 611-624.

12.

T. Jankowski. (2008). Positive solutions to second order four-point boundary value problems for impulsive differential equations. Appl. Math. Comput., 202, 550-561. 10.1016/j.amc.2008.02.040.

13.

X. Lin & D. Jiang. (2006). Multiple positive solutions of Dirichlet boundary value problems for second-order impulsive differential equations. J. Math. Anal. Appl., 321, 501-514. 10.1016/j.jmaa.2005.07.076.

14.

V. Lakshmikantham, D.D. Bainov & P. S. Simeonov. Theory of Impulsive Differential Equations.

15.

E.K. Lee & Y.H. Lee. (2004). Multiple positive solutions of singular two point boundary value problems for second-order impulsive differential equations. Appl. Math. Comput., 158, 745-759. 10.1016/j.amc.2003.10.013.

16.

Y.H. Lee & X.Z. Liu. (2007). Study of singular boundary value problems for second order impulsive differential equations. J. Math. Anal. Appl., 331, 159-176. 10.1016/j.jmaa.2006.07.106.

17.

S.H. Liang & J.H. Zhang. (2009). The existence of countably many positive solutions for some nonlinear singular three-point impulsive boundary value problems. Nonlinear Anal., 71, 4588-4597. 10.1016/j.na.2009.03.016.

18.

C.M. Miao, W.G Ge & J. Zhang. (2009). A singular boundary value problem with integral boundary condition for a first-order impulsive differential equation. (Chinese) Mathematics in Practice and Theory, 39(15), 182-186.

19.

J.J. Nieto. (1997). Basic theory for nonresonance impulsive periodic problems of first order. J. Math. Anal. Appl., 205(2), 423-433. 10.1006/jmaa.1997.5207.

20.

S. Nenov. (1999). Impulsive controllability and optimization problems in population dynamics. Nonlinear Anal., 36, 881-890. 10.1016/S0362-546X(97)00627-5.

21.

J.J. Nieto & D. O'Regan. (2009). Variational approach to impulsive differential equations. Nonlinear Anal. RWA, 10, 680-690. 10.1016/j.nonrwa.2007.10.022.

22.

J.J. Nieto. (2010). Variational formulation of a damped Dirichlet impulsive problem. Appl. Math. Lett., 23, 940-942. 10.1016/j.aml.2010.04.015.

23.

I. Rachunkova & J. Tomecek. (2006). Singular Dirichlet problem for ordinary differential equation with impulses. Nonlinear Anal., 65, 210-229. 10.1016/j.na.2005.09.016.

24.

Y. Tian & W.G. Ge. (2010). Variational methods to Sturm-Liouville boundary value problem for impulsive differential equations. Nonlinear Anal., 72, 277-287. 10.1016/j.na.2009.06.051.

25.

Y. Tian & W.G. Ge. (2012). Multiple solutions of impulsive Sturm-Liouville boundary value problem via lower and upper solutions and variational methods. J. Math. Anal. Appl., 387, 475-489. 10.1016/j.jmaa.2011.08.042.

26.

J.F. Xu, D. O'Regan & Z.L. Yang. (2014). Positive Solutions for a nth-Order Impulsive Differential Equation with Integral Boundary Conditions. Differ Equ Dyn Syst., 22, 427-439. 10.1007/s12591-013-0176-4.

한국수학교육학회지시리즈B:순수및응용수학