바로가기메뉴

본문 바로가기 주메뉴 바로가기

logo

Lightlike submanifolds of an indefinite Sasakian manifold with a non-metric θ-connection

Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics / Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics, (P)1226-0657; (E)2287-6081
2014, v.21 no.4, pp.229-236
https://doi.org/10.7468/jksmeb.2014.21.4.229
Jin, Dae Ho
  • Downloaded
  • Viewed

Abstract

In this paper, we study two types of 1-lightlike submanifolds, named by lightlike hypersurface and half lightlike submanifold, of an indefinite Sasakian manifold admitting non-metric <TEX>${\theta}$</TEX>-connections. We prove that there exist no such two types of 1-lightlike submanifolds of an indefinite Sasakian manifold.

keywords
non-metric <tex> ${\theta}$</tex>-connections, lightlike hypersurface, half lightlike submanifold

Reference

1.

K.L. Duggal & D.H. Jin. (1999). Half-lightlike submanifolds of codimension 2. Math. J. Toyama Univ., 22, 121-161.

2.

N.S. Ageshe & M.R. Chafle. (1992). A semi-symmetric non-metric connection on a Riemannian manifold. Indian J. Pure Appl. Math., 23(6), 399-409.

3.

Ahmad, Mobin;Haseeb, Abdul;Ozgur, Cihan;. (2009). Hypersurfaces of an almost r-paracontact Riemannian Manifold Endowed with a Quarter Symmetric Non-metric Connection. Kyungpook mathematical journal, 49(3), 533-543. 10.5666/KMJ.2009.49.3.533.

4.

A. Barman. (2012). On a type of quarter-symmetric non-metric <TEX>${\phi}$</TEX>-connection on a Kenmotsu manifold. Bull. Math. Analy. and Appl., 4(2), 1-11.

5.

K.L. Duggal & A. Bejancu. Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications.

6.

K.L. Duggal & D.H. Jin. Null curves and Hypersurfaces of Semi-Riemannian Manifolds.

7.

K.L. Duggal & B. Sahin. Differential geometry of lightlike submanifolds.

8.

S. Golab. (1975). On semi-symmetric and quarter-symmetric connections. Tensor, N.S., 29, 249-254.

9.

D.H. Jin. (2010). Geometry of lightlike hypersurfaces of an indefinite Sasakian manifold. Indian J. Pure and Appl. Math., 41(4), 569-581. 10.1007/s13226-010-0032-y.

10.

D.H. Jin. (2011). Half lightlike submanifolds of an indefinite Sasakian manifold. J. Korean Soc Math. Edu. Ser. B: Pure Appl. Math., 18(2), 173-183.

11.

D.H. Jin. (2012). Lightlike submanifolds of a semi-Riemannian manifold with a semi-symmetric non-metric connection. J. Korean Soc Math. Edu. Ser. B., 19(3), 211-228.

12.

S. Sasaki. Almost contact manifolds. Lecture notes, Math. Inst., Tohoku Univ., Vol. I, II, III.

13.

Jin, Dae Ho;. (2013). EINSTEIN LIGHTLIKE HYPERSURFACES OF A LORENTZ SPACE FORM WITH A SEMI-SYMMETRIC NON-METRIC CONNECTION. Bulletin of the Korean Mathematical Society, 50(4), 1367-1376. 10.4134/BKMS.2013.50.4.1367.

14.

D.H. Jin. (2013). Einstein half lightlike submanifolds of a Lorentzian space form with a semi-symmetric non-metric connection. J. Ineq. and Appl., 2013, 403. 10.1186/1029-242X-2013-403.

15.

Jin, Dae Ho;Lee, Jae Won;. (2013). A CLASSIFICATION OF HALF LIGHTLIKE SUBMANIFOLDS OF A SEMI-RIEMANNIAN MANIFOLD WITH A SEMI-SYMMETRIC NON-METRIC CONNECTION. Bulletin of the Korean Mathematical Society, 50(3), 705-717. 10.4134/BKMS.2013.50.3.705.

16.

S. Yadav & D.L. Suthar. (2011). A quart symmetric non-metric connection in a generalized co-symmpletic manifolds. Glob. J. Sci. Fron. Res, 11(9), 1-7.

17.

E. Yasar, A.C. Coken & A. Yucesan. (2008). Lightlike hypersurfaces in semi-Riemannian manifold with semi-symmetric non-metric connection. Math. Scand., 102, 253-264.

Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics