바로가기메뉴

본문 바로가기 주메뉴 바로가기

ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

logo

  • P-ISSN1226-0657
  • E-ISSN2287-6081
  • KCI

ISOPARAMETRIC FUNCTIONS IN S<sup>4n+3</sup>

ISOPARAMETRIC FUNCTIONS IN S^(4n+3)

한국수학교육학회지시리즈B:순수및응용수학 / Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics, (P)1226-0657; (E)2287-6081
2014, v.21 no.4, pp.257-270
https://doi.org/10.7468/jksmeb.2014.21.4.257
Jee, Seo-In (Department of Mathematics, Ewha Womans University)
Lee, Jae-Hyouk (Department of Mathematics, Ewha Womans University)

Abstract

In this article, we consider a homogeneous function of degree four in quaternionic vector spaces and <TEX>$S^{4n+3}$</TEX> which is invariant under <TEX>$S^3$</TEX> and U(n + 1)-action. We show it is an isoparametric function providing isoparametric hypersurfaces in <TEX>$S^{4n+3}$</TEX> with g = 4 distinct principal curvatures and isoparametric hypersurfaces in quaternionic projective spaces with g = 5. This extends study of Nomizu on isoparametric function on complex vector spaces and complex projective spaces.

keywords
isoparametric function, quaternionic vector space, sphere

참고문헌

1.

U. Abresch. (1983). Isoparametric hypersurfaces with four or six distinct principal curvatures. Math. Ann., 264, 283-302. 10.1007/BF01459125.

2.

E. Cartan. (1938). Familles de surfaces isoparametriques dans les espaces a courbure constante. Annali di Mat., 17, 177-191. 10.1007/BF02410700.

3.

E. Cartan. (1939). Sur des familles remarquables d'hypersurfaces isoparametriques dans les espaces spheriques. Math. Z., 45, 335-367. 10.1007/BF01580289.

4.

E. Cartan. (1939). Sur quelques familles remarquables d'hypersurfaces (30-41). C.R. Congres Math. Liege.

5.

E. Cartan. (1940). Sur des familles d'hypersurfaces isoparametriques des espaces spheriques a 5 et a 9 dimensions. Revista Univ. Tucuman, 1, 5-22.

6.

T.E. Cecil. (1974). A characterization of metric spheres in hyperbolic space by Morse theory. Tohoku Math. J., 26(2), 341-351. 10.2748/tmj/1178241128.

7.

T.E. Cecil. (2008). Isoparametric and Dupin hypersurfaces. Symmetry, Integrability and Geometry: Methods and Applications, 4(62), 1-28.

8.

T.E. Cecil & P.J. Ryan. Tight and taut immersions of manifolds;Research Notes in Math. Vol. 107.

9.

M. Kimura. (1986). Real hypersurfaces and complex submanifolds in complex projective space. Tran. Amer. Math. Soc., 296, 137-149. 10.1090/S0002-9947-1986-0837803-2.

10.

H.F. Munzner. (1980). Isoparametrische Hyperflachen in Spharen. I. Math. Ann., 251, 57-71. 10.1007/BF01420281.

11.

H.F. Munzner. (1981). Isoparametrische Hyperflachen in Spharen. II, Uber die Zerlegung der Sphare in Ballbundel. Math. Ann., 256, 215-232. 10.1007/BF01450799.

12.

K. Nomizu. (1973). Some results in E. Cartan's theory of isoparametric families of hypersurfaces. Bull. Amer. Math. Soc., 79, 1184-1188. 10.1090/S0002-9904-1973-13371-3.

13.

K.S. Park. (1989). Isoparametric families on projective spaces. Math. Ann., 284, 503-513. 10.1007/BF01442500.

14.

G. Thorbergsson. A survey on isoparametric hypersurfaces and their generalizations. Handbook of differential geometry, Vol. I.

15.

Q.M. Wang. (1982). Isoparametric hypersurfaces in complex projective spaces (1509-1523). Diff. geom. and diff. equ., Proc. 1980 Beijing Sympos..

16.

L. Xiao. (2000). Principal curvatures of isoparametric hypersurfaces in <TEX>${\mathbb{C}}P^n$</TEX>. Proc. Amer. Math. Soc., 352, 4487-4499. 10.1090/S0002-9947-00-02578-2.

한국수학교육학회지시리즈B:순수및응용수학