바로가기메뉴

본문 바로가기 주메뉴 바로가기

logo

  • P-ISSN1226-0657
  • E-ISSN2287-6081
  • KCI

Split hyperholomorphic function in Clifford analysis

Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics / Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics, (P)1226-0657; (E)2287-6081
2015, v.22 no.1, pp.57-63
https://doi.org/10.7468/jksmeb.2015.22.1.57
Lim, Su Jin
Shon, Kwang Ho

Abstract

We define a hyperholomorphic function with values in split quaternions, provide split hyperholomorphic mappings on <TEX>${\Omega}{\subset}\mathbb{C}^2$</TEX> and research the properties of split hyperholomorphic functions.

keywords
split quaternion, split hyperholomorphic function, Clifford analysis

Reference

1.

Carmody, K.;. (1988). Circular and hyperbolic quaternions, octonions and sedenions. Appl. Math. Comput., 28(1), 47-72. 10.1016/0096-3003(88)90133-6.

2.

Carmody, K.;. (1997). Circular and hyperbolic quaternions, octonions and sedenions-Further results. Appl. Math. Comput., 84(1), 27-47. 10.1016/S0096-3003(96)00051-3.

3.

Deavous, C.A.;. (1973). The quaternion calculus. Am. Math. Mon., 80(9), 995-1008. 10.2307/2318774.

4.

Kajiwara, J.;Li, X.D.;Shon, K.H.;. International Colloquium on Finite or Infinite Dimensional Complex Analysis and its Applications;Regeneration in complex, quaternion and Clifford analysis.

5.

Kajiwara, J.;Li, X.D.;Shon, K.H.;. International Colloquium on Finite or Infinite Dimensional Complex Analysis and its Applications;Function spaces in complex and Clifford analysis.

6.

Kula, L.;Yayl, Y.;. (2007). Split quaternions and rotations in semi Euclidean space E4. J. Korean Math. Soc., 44(6), 1313-1327. 10.4134/JKMS.2007.44.6.1313.

7.

Lang, S.;. Calculus of several variables.

8.

Obolashvili, E.;. (1996). Some partial differential equations in Clifford analysis. Banach Center Publ., 37(1), 173-179.

9.

&#xD6;zdemir, M.;Ergin, A.A.;. (2006). Rotations with unit timelike quaternions in Minkowski 3-space. J. Geom. Phys., 56(2), 322-336. 10.1016/j.geomphys.2005.02.004.

10.

Sangwine, S.J.;Bihan, N.L.;. (2010). Quaternion polar representation with a complex modulus and complex argument inspired by the Cayley-Dickson form. Adv. in Appl. Cliff. Algs., 20(1), 111-120. 10.1007/s00006-008-0128-1.

Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics