ISSN : 1226-0657
In this paper, we classify all nonconstant smooth CR maps from a sphere <TEX>$S_{n,1}{\subset}\mathbb{C}^n$</TEX> with n > 3 to the Shilov boundary <TEX>$S_{p,q}{\subset}\mathbb{C}^{p{\times}q}$</TEX> of a bounded symmetric domain of Cartan type I under the condition that p - q < 3n - 4. We show that they are either linear maps up to automorphisms of <TEX>$S_{n,1}$</TEX> and <TEX>$S_{p,q}$</TEX> or D'Angelo maps. This is the first classification of CR maps into the Shilov boundary of bounded symmetric domains other than sphere that includes nonlinear maps.
Huang, X.;Ji, S.;. (2001). Mapping Bn into B2n−1. Invent. Math., 145(2), 219-250. 10.1007/s002220100140.
Huang, X.;Ji, S.;Xu, D.;. (2006). A new gap phenomenon for proper holomorphic mappings from Bn into BN. Math. Res. Lett., 13(4), 515-529. 10.4310/MRL.2006.v13.n4.a2.
Poincaré, H.;. (1907). Les fonctions analytiques de deux variables et la representation conforme. Rend. Circ. Mat. Palermo, 23(2), 185-220. 10.1007/BF03013518.
Kaup, W.;Zaitsev, D.;. (2000). On symmetric Cauchy-Riemann manifolds. Adv. Math., 149(2), 145-181. 10.1006/aima.1999.1863.
Kim, S.;Zaitsev, D.;. (2013). Rigidity of CR maps between Shilov boundaries of bounded symmetric domains. Invent. Math., 193(2), 409-437. 10.1007/s00222-012-0430-3.
Mok, N.;. Series in Pure Math.;Metric Rigidity Theorems on Hermitian Locally Symmetric Spaces.
Seo, Aeryeong;. New examples of proper holomorphic maps between bounded symmetric domains.
Tsai, I-H.;. (1993). Rigidity of proper holomorphic maps between symmetric domains. J. Differential Geom., 37(1), 123-160.
Alexander, H.;. (1974). Holomorphic mappings from the ball and polydisc. Math. Ann., 209, 249-256. 10.1007/BF01351851.
Chern, S.S;Moser, J.K.;. (1974). Real hypersurfaces in complex manifolds. Acta Math., 133, 219-271. 10.1007/BF02392146.
Ebenfelt, P.;Huang, X.;Zaitsev, D.;. (2004). Rigidity of CR-immersions into spheres. Comm. in Analysis and Geometry, 12(3), 631-670. 10.4310/CAG.2004.v12.n3.a6.
Forstnerič, F.;. (1986). Proper holomorphic maps between balls. Duke Math. J., 53, 427-440. 10.1215/S0012-7094-86-05326-3.
Huang, X.;. (2003). On a semi-rigidity property for holomorphic maps. Asian J. Math., 7(4), 463-492.
Webster, S.M.;. (1979). The rigidity of C-R hypersurfaces in a sphere. Indiana Univ. Math. J., 28, 405-416. 10.1512/iumj.1979.28.28027.
Faran V, J.J.;. (1986). On the linearity of proper maps between balls in the lower codimensional case. J. Differential Geom., 24, 15-17.
Huang, X.;. (1999). On a linearity problem for proper holomorphic maps between balls in complex spaces of different dimensions. J. Differential Geom., 51, 13-33.