ISSN : 1226-0657
In this paper the existence of global solutions of the parabolic cross-diffusion systems with cooperative reactions is obtained under certain conditions. The uniform boundedness of <TEX>$W_{1,2}$</TEX> norms of the local maximal solution is obtained by using interpolation inequalities and comparison results on differential inequalities.
Amann, H.;. (1989). Dynamic theory of quasilinear parabolic equations, III. Global Existence. Math Z., 202, 219-250. 10.1007/BF01215256.
Amann, H.;. (1990). Dynamic theory of quasilinear parabolic equations, II. Reaction-diffusion systems. Differential and Integral Equations, 3(1), 13-75.
Amann, H.;. (1993). Non-homogeneous linear and quasilinear elliptic and parabolic boundary value problems (9-126). Function spaces, differential operators and nonlinear analysis (1992), Teubner-Texte Math..
Delgado, M.;Montenegro, M.;Suárez, A.;. (2009). A Lotka-Volterra symbiotic model with cross-diffusion. J. Differential Equations, 246, 2131-2149. 10.1016/j.jde.2008.10.032.
Friedman, A.;. Partial differential equations.
Nirenberg, L.;. (1959). On ellipic partial differential equations. Ann. Scuo. Norm. Sup. Pisa, 13(3), 115-162.
Okubo, A.;Levin, L.A.;. Interdisciplinary Applied Mathematics;Diffusion and Ecological Problems: Modem Perspective.
Pao, C.V.;. (2005). Strongly coupled elliptic systems and applications to Lotka-Volterra models with cross-diffusion. Nonlinear Anal., 60, 1197-1217. 10.1016/j.na.2004.10.008.