바로가기메뉴

본문 바로가기 주메뉴 바로가기

logo

  • P-ISSN1226-0657
  • E-ISSN2287-6081
  • KCI

STRONG CONVERGENCE IN NOOR-TYPE ITERATIVE SCHEMES IN CONVEX CONE METRIC SPACES

Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics / Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics, (P)1226-0657; (E)2287-6081
2015, v.22 no.2, pp.185-197
https://doi.org/10.7468/jksmeb.2015.22.2.185
LEE, BYUNG-SOO

Abstract

The author considers a Noor-type iterative scheme to approximate com- mon fixed points of an infinite family of uniformly quasi-sup(f<sub>n</sub>)-Lipschitzian map- pings and an infinite family of g<sub>n</sub>-expansive mappings in convex cone metric spaces. His results generalize, improve and unify some corresponding results in convex met- ric spaces <xref>[1</xref>,<xref> 3</xref>, <xref>9</xref>, <xref>16</xref>, <xref>18</xref>, <xref>19]</xref> and convex cone metric spaces <xref>[8]</xref>.

keywords
convex structure, convex cone metric space, Noor-type iteration, f- expansive mapping, asymptotically f-expansive mapping, asymptotically quasi-f-expansive map- ping, f-uniformly quasi-sup(f)-Lipschitzian mapping.

Reference

1.

Noor, M.A;. (2000). New approximation schemes for general variational inequalities. J. Math. Anal. Appl., 251, 217-229. 10.1006/jmaa.2000.7042.

2.

Wang, C;Zhu, J.H;Damjanovic, B;Hu, L.G;. (2009). Approximating fixed points of a pair of contractive type mappings in generalized convex metric spaces. Appl. Math. Comput., 215, 1522-1525. 10.1016/j.amc.2009.07.006.

3.

Xu, B;Noor, M.A;. (2002). Fixed-point iterations for asymptotically nonexpansive mappings in Banach spaces. J. Math. Anal. Appl., 267, 444-453. 10.1006/jmaa.2001.7649.

4.

Yao, Y;Noor, M.A;. (2007). Convergence of three-step iteration for asymptotically nonexpansive mappings. Appl. Math. Comput., 187, 883-892. 10.1016/j.amc.2006.09.008.

5.

Liu, Q.Y;Liu, Z.B;Huang, N.J;. (2010). Approximating the common fixed points of two sequencesof uniformly quasi-Lipschitzian mappings in convex metric spaces. Appl. Math. Comput., 216, 883-889. 10.1016/j.amc.2010.01.096.

6.

Nammanee, K;Suantai, S;. (2007). The modified Noor iterations with errors for nonLipschitzianmappings in Banach spaces. Appl. Math. Comput., 187, 669-679. 10.1016/j.amc.2006.08.081.

7.

Noor, M.A;. (2004). Some developments on general variational inequalities. Appl. Math. Comput., 152, 199-277. 10.1016/S0096-3003(03)00558-7.

8.

Noor, M.A;Huang, Z;. (2007). Three-step methods for nonexpansive mappings and variational inequalities. Appl. Math. Comput., 187, 680-685. 10.1016/j.amc.2006.08.088.

9.

Suantai, S;. (2005). Weak and strong convergence criteria of Noor iterations for asymptotically nonexpansive mappings. J. Math. Anal. Appl., 311, 506-517. 10.1016/j.jmaa.2005.03.002.

10.

Takahashi, W;. (1970). A convexity in metric space and nonexpansive mappings. Kodai. Math. Rep., 22, 142-149. 10.2996/kmj/1138846111.

11.

Tian, Y.X;. (2005). Convergence of an Ishikawa type iterative scheme for asymptotically quasinonexpansive mappings. Comput. Math. Appl., 49, 1905-1912. 10.1016/j.camwa.2004.05.017.

12.

Tian, Y.X;Yang, C.D;. (0000). Convergence theorems of three-step iterative scheme for a finite family of uniformly quasi-Lipschitzian mappings in convex metric spaces. Fixed Point Theory and Applications, 2009.

13.

Wang, C;Liu, L.W;. (2009). Convergence theorems for fixed points of uniformly quasiLipschizian mappings in convex metric spaces. Nonlinear Anal. TMA, 70, 2067-2071. 10.1016/j.na.2008.02.106.

14.

Chang, S.S;Yang, L;Wang, X.R;. (2010). Stronger convergence theorem for an infinite family of uniformly quasi-Lipschitzian mappings in convex metric spaces. Appl. Math. Comput., 217, 277-282. 10.1016/j.amc.2010.05.058.

15.

Cho, Y.J;Zhou, H.Y;Guo, G;. (2004). Weak and strong convengence theorems for three-step iteration with errors for asymptotically nonexpansive mappings. Comput. Math. Appl., 47, 707-717. 10.1016/S0898-1221(04)90058-2.

16.

Fukhar-ud-din, Hafiz;Safeer Hussin, Khan;. (2007). Convergence of iterates with errors of asymptotically quasi-nonexpansive mappings and applications. J. Math. Anal. Appl., 328, 821-829. 10.1016/j.jmaa.2006.05.068.

17.

Huang, L.-G;Zhang, X;. (2007). Cone metric spaces and fixed point theorems of contractive mappings. J. Math. Anal. Appl., 322, 1468-1476.

18.

Huang, N.J;Cho, Y.J;. (1996). Fixed point theorems of compatiable mappings in convex metric spaces. Soochow J. Math., 22, 439-447.

19.

Khan, A.R;Ahmed, M.A;. (2010). Convergence of a general iterative scheme for a finite family of asymptotically quasi-nonexpansive mappings in convex metric spaces and applications. Com. Math. Appl., 59(8), 2990-2995. 10.1016/j.camwa.2010.02.017.

20.

Khan, A.R;Domlo, A.A;Fukhar-ud-din, H;. (2008). Common fixed points Noor iteration for a finite family of asymptotically quasi-nonexpansive mappings in Banach spaces. J. Math. Anal. Appl., 341, 1-11. 10.1016/j.jmaa.2007.06.051.

21.

Lee, B.-S;. (2013). Approximating common fixed points of two sequences of uniformly quasiLipschitziammappings in convex cone metric spaces. Univ. J. Appl. Math., 1(3), 166-171.

Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics