바로가기메뉴

본문 바로가기 주메뉴 바로가기

logo

A FUNCTIONAL APPROACH TO d-ALGEBRAS

Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics / Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics, (P)1226-0657; (E)2287-6081
2015, v.22 no.2, pp.179-184
https://doi.org/10.7468/jksmeb.2015.22.2.179
SO, KEUM SOOK
  • Downloaded
  • Viewed

Abstract

In this paper we discuss a functional approach to obtain a lattice-like structure in d-algebras, and obtain an exact analog of De Morgan law and some other properties.

keywords
d-algebra, order reversing, self-inverse, (anti-)homomorphism

Reference

1.

Han, J.S.;Kim, H.S.;Neggers J., J.;. (2010). Strong and ordinary d-algebras. Multi.-Valued Logic & Soft Computing, 16, 331-339.

2.

Neggers, J.;Jun, Y.B.;Kim, H.S.;. (1999). On d-ideals in d-algebras. Math. Slovaca, 49, 243-251.

3.

Allen, P.J.;Kim, H.S.;Neggers, J.;. (2007). On companion d-algebras. Math. Slovaca, 57, 93-106.

4.

Allen, P.J.;Kim, H.S.;Neggers, J.;. (2004). L-up and mirror algebras. Sci. Math. Japonica., 59, 605-612.

5.

Dvurečenskij, A.;Pulmannová, S.;. New Trends in Quantum Structures.

6.

Huang, Y.;. BCI-algebras.

7.

Iorgulescu, A.;. Algebras of Logic as BCK-algebras.

8.

Iséki, K.;. (1980). On BCI-algebras. Math. Seminar Notes, 8, 125-130.

9.

Iséki, K.;Tanaka, S.;. (1978). An introduction to theory of BCK-algebras. Math. Japonica, 23, 1-26.

10.

Kim, H.S.;Neggers, J.;So, K.S.;. (2012). Some aspects of d-units in d/BCK-algebras. Jour. of Applied Math., 2012.

11.

Meng, J.;. (1995). Implicative commutative semigroups are equivalent to a class of BCK-algebras. Semigroup Forum, 50, 89-96. 10.1007/BF02573506.

12.

Meng, J.;Jun, Y. B.;. BCK-algebras.

13.

Mundici, D.;. (1986). MV -algebras are categorically equivalent to bounded commutative BCK-algebras. Math. Japonica, 31, 889-894.

14.

Neggers, J.;Kim, H.S.;. (1999). On d-algebras. Math. Slovaca, 49, 19-26.

15.

Neggers, J.;Dvureećenskij, A.;Kim, H.S.;. (2000). On d-fuzzy functions in d-algebras. Foundation of Physics, 30, 1805-1815.

16.

Ahn, S.S.;Kim, Y.H.;. (2009). Some constructions of implicative/commutative d-algebras. Bull. Korean Math. Soc., 46, 147-153. 10.4134/BKMS.2009.46.1.147.

17.

Yisheng, H.;. BCI-algebras.

Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics