ISSN : 1226-0657
In this paper we discuss a functional approach to obtain a lattice-like structure in d-algebras, and obtain an exact analog of De Morgan law and some other properties.
Han, J.S.;Kim, H.S.;Neggers J., J.;. (2010). Strong and ordinary d-algebras. Multi.-Valued Logic & Soft Computing, 16, 331-339.
Neggers, J.;Jun, Y.B.;Kim, H.S.;. (1999). On d-ideals in d-algebras. Math. Slovaca, 49, 243-251.
Allen, P.J.;Kim, H.S.;Neggers, J.;. (2007). On companion d-algebras. Math. Slovaca, 57, 93-106.
Allen, P.J.;Kim, H.S.;Neggers, J.;. (2004). L-up and mirror algebras. Sci. Math. Japonica., 59, 605-612.
Dvurečenskij, A.;Pulmannová, S.;. New Trends in Quantum Structures.
Huang, Y.;. BCI-algebras.
Iorgulescu, A.;. Algebras of Logic as BCK-algebras.
Iséki, K.;. (1980). On BCI-algebras. Math. Seminar Notes, 8, 125-130.
Iséki, K.;Tanaka, S.;. (1978). An introduction to theory of BCK-algebras. Math. Japonica, 23, 1-26.
Kim, H.S.;Neggers, J.;So, K.S.;. (2012). Some aspects of d-units in d/BCK-algebras. Jour. of Applied Math., 2012.
Meng, J.;. (1995). Implicative commutative semigroups are equivalent to a class of BCK-algebras. Semigroup Forum, 50, 89-96. 10.1007/BF02573506.
Meng, J.;Jun, Y. B.;. BCK-algebras.
Mundici, D.;. (1986). MV -algebras are categorically equivalent to bounded commutative BCK-algebras. Math. Japonica, 31, 889-894.
Neggers, J.;Kim, H.S.;. (1999). On d-algebras. Math. Slovaca, 49, 19-26.
Neggers, J.;Dvureećenskij, A.;Kim, H.S.;. (2000). On d-fuzzy functions in d-algebras. Foundation of Physics, 30, 1805-1815.
Ahn, S.S.;Kim, Y.H.;. (2009). Some constructions of implicative/commutative d-algebras. Bull. Korean Math. Soc., 46, 147-153. 10.4134/BKMS.2009.46.1.147.
Yisheng, H.;. BCI-algebras.