바로가기메뉴

본문 바로가기 주메뉴 바로가기

ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

logo

  • P-ISSN1226-0657
  • E-ISSN2287-6081
  • KCI

SPECTRAL PROPERTIES OF k-QUASI-2-ISOMETRIC OPERATORS

SPECTRAL PROPERTIES OF k-QUASI-2-ISOMETRIC OPERATORS

한국수학교육학회지시리즈B:순수및응용수학 / Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics, (P)1226-0657; (E)2287-6081
2015, v.22 no.3, pp.275-283
https://doi.org/10.7468/jksmeb.2015.22.3.275
SHEN, JUNKI (COLLEGE OF COMPUTER AND INFORMATION TECHNOLOGY, HENAN NORMAL UNIVERSITY)
ZUO, FEI (HENAN ENGINEERING LABORATORY FOR BIG DATA STATISTICAL, ANALYSIS AND OPTIMAL CONTROL, SCHOOL OF MATHEMATICS AND INFORMATION SCIENCE, HENAN NORMAL UNIVERSITY)

Abstract

Let T be a bounded linear operator on a complex Hilbert space H. For a positive integer k, an operator T is said to be a k-quasi-2-isometric operator if T<sup>∗k</sup>(T<sup>∗2</sup>T<sup>2</sup> &#x2212; 2T<sup>∗</sup>T + I)T<sup>k</sup> = 0, which is a generalization of 2-isometric operator. In this paper, we consider basic structural properties of k-quasi-2-isometric operators. Moreover, we give some examples of k-quasi-2-isometric operators. Finally, we prove that generalized Weyl&#x2019;s theorem holds for polynomially k-quasi-2-isometric operators.

keywords
k-quasi-2-isometric operator, polaroid, generalized Weyl’s theorem.

참고문헌

1.

Laursen, K.B.;Neumann, M.M.;. Introduction to Local Spectral Theory.

2.

Patel, S.M.;. (2002). 2-isometry operators. Glasnik Mat., 37(57), 143-147.

3.

Rosenblum, M.A.;. (1956). On the operator equation BX &#x2212; XA = Q. Duke Math. J., 23, 263-269. 10.1215/S0012-7094-56-02324-9.

4.

Ch&#x14D;, M.;&#xD4;ta, S.;Tanahashi, K.;Uchiyama, A.;. (2012). Spectral properties of m-isometric operators. Funct. Anal. Approx. Comput., 4(2), 33-39.

5.

Duggal, B.P.;. (2012). Tensor product of n-isometries. Linear Algebra Appl., 437, 307-318. 10.1016/j.laa.2012.02.017.

6.

Agler, J.;. (1990). A disconjugacy theorem for Toeplitz operators. Amer. J. Math., 112(1), 1-14. 10.2307/2374849.

7.

Agler, J.;Stankus, M.;. (1995). m-isometric transformations of Hilbert space. I. Integral Equ. Oper. Theory, 21(4), 383-429. 10.1007/BF01222016.

8.

Bermudez, T.;Martinon, A.;Negrin, E.;. (2010). Weighted shift operators which are m-isometry. Integral Equ. Oper. Theory, 68, 301-312. 10.1007/s00020-010-1801-z.

9.

Berkani, M.;Arroud, A.;. (2004). Generalized Weyl&#x2019;s theorem and hyponormal operators. J. Austra. Math. Soc., 76(2), 291-302. 10.1017/S144678870000896X.

10.

Berkani, M.;Koliha, J.J.;. (2003). Weyl type theorems for bounded linear operators. Acta Sci. Math.(Szeged), 69(1-2), 359-376.

11.

Berkani, M.;Sarih, M.;. (2001). On semi B-Fredholm operators. Glasgow Math. J., 43(3), 457-465.

12.

Ch&#x14D;, M.;&#xD4;ta, S.;Tanahashi, K.;. (2013). Invertible weighted shift operators which are m-isometries. Proc. Amer. Math. Soc., 141(12), 4241-4247. 10.1090/S0002-9939-2013-11701-6.

13.

Duggal, B.P.;. (2007). Polaroid operators, SVEP and perturbed Browder, Weyl theorems. Rendiconti Circ Mat di Palermo LVI, 56, 317-330. 10.1007/BF03032085.

14.

Han, J.K.;Lee, H.Y.;. (1999). Invertible completions of 2&#x2217;2 upper triangular operator matrices. Proc. Amer. Math. .Soc, 128, 119-123.

15.

Harte, R.E.;Lee, W.Y.;. (1997). Another note on Weyl&#x2019;s theorem. Trans. Amer. Math. Soc., 349(5), 2115-2124. 10.1090/S0002-9947-97-01881-3.

한국수학교육학회지시리즈B:순수및응용수학