바로가기메뉴

본문 바로가기 주메뉴 바로가기

logo

  • P-ISSN1226-0657
  • E-ISSN2287-6081
  • KCI

ORTHOGONALITY AND LINEAR MAPPINGS IN BANACH MODULES

Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics / Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics, (P)1226-0657; (E)2287-6081
2015, v.22 no.4, pp.343-357
https://doi.org/10.7468/jksmeb.2015.22.4.343
YUN, SUNGSIK

Abstract

Using the fixed point method, we prove the Hyers-Ulam stability of lin- ear mappings in Banach modules over a unital C*-algebra and in non-Archimedean Banach modules over a unital C*-algebra associated with the orthogonally Cauchy- Jensen additive functional equation.

keywords
Hyers-Ulam stability, orthogonally Cauchy-Jensen additive functional equation, fixed point, non-Archimedean Banach module over C*-algebra, orthogonality space

Reference

1.

Deses, D.;. (2005). On the representation of non-Archimedean objects. Topology Appl, 153, 774-785. 10.1016/j.topol.2005.01.010.

2.

Czerwik, S.;. Stability of Functional Equations of Ulam-Hyers-Rassias Type.

3.

Czerwik, S.;. Functional Equations and Inequalities in Several Variables.

4.

Czerwik, S.;. (1992). On the stability of the quadratic mapping in normed spaces. Abh. Math. Sem. Univ. Hamburg, 62, 59-64. 10.1007/BF02941618.

5.

Cholewa, P.W.;. (1984). Remarks on the stability of functional equations. Aequationes Math, 27, 76-86. 10.1007/BF02192660.

6.

Carlsson, S.O.;. (1962). Orthogonality in normed linear spaces. Ark. Mat, 4, 297-318. 10.1007/BF02591506.

7.

Cădariu, L.;Radu, V.;. (2008). Fixed point methods for the generalized stability of functional equations in a single variable. Fixed Point Theory and Applications, 2008.

8.

Cădariu, L.;Radu, V.;. (2004). On the stability of the Cauchy functional equation: a fixed point approach. Grazer Math. Ber, 346, 43-52.

9.

Cădariu, L.;Radu, V.;. (2003). Fixed points and the stability of Jensen's functional equation. J. Inequal. Pure Appl. Math, 4(1).

10.

Birkhoff, G.;. (1935). Orthogonality in linear metric spaces. Duke Math. J, 1, 169-172. 10.1215/S0012-7094-35-00115-6.

11.

Alonso, J.;Benítez, C.;. (1989). Orthogonality in normed linear spaces: a survey II. Relations between main orthogonalities. Extracta Math, 7, 121-131.

12.

Alonso, J.;Benítez, C.;. (1988). Orthogonality in normed linear spaces: a survey I. Main properties. Extracta Math, 3, 1-15.

13.

James, R.C.;. (1947). Orthogonality and linear functionals in normed linear spaces. Trans. Amer. Math. Soc., 61, 265-292. 10.1090/S0002-9947-1947-0021241-4.

14.

James, R.C.;. (1945). Orthogonality in normed linear spaces. Duke Math. J., 12, 291-302. 10.1215/S0012-7094-45-01223-3.

15.

Hensel, K.;. (1897). Ubereine news Begrundung der Theorie der algebraischen Zahlen. Jahresber. Deutsch. Math. Verein, 6, 83-88.

16.

Isac, G.;Rassias, M.;. (1996). Stability of ψ-additive mappings: Appications to nonlinear analysis. Internat. J. Math. Math. Sci., 19, 219-228. 10.1155/S0161171296000324.

17.

D.H., Hyers;G., Isac;M., Rassias;. Stability of Functional Equations in Several Variables.

18.

Hyers, D.H.;. (1941). On the stability of the linear functional equation. Proc. Nat. Acad. Sci. U.S.A., 27, 222-224. 10.1073/pnas.27.4.222.

19.

Gudder, S.;Strawther, D.;. (1975). Orthogonally additive and orthogonally increasing functions on vector spaces. Pacific J. Math., 58, 427-436. 10.2140/pjm.1975.58.427.

20.

Ger, R.;Sikorska, J.;. (1995). Stability of the orthogonal additivity. Bull. Polish Acad. Sci. Math., 43, 143-151.

21.

Fochi, M.;. (1989). Functional equations in A-orthogonal vectors.. Aequationes Math., 38, 28-40. 10.1007/BF01839491.

22.

Drljević, F.;. (1986). On a functional which is quadratic on A-orthogonal vectors. Publ. Inst. Math.(Beograd), 54, 63-71.

23.

Diminnie, C.R.;. (1983). A new orthogonality relation for normed linear spaces. Math. Nachr., 114, 197-203. 10.1002/mana.19831140115.

24.

Diaz, J.;Margolis, B.;. (1968). A fixed point theorem of the alternative for contractions on a generalized complete metric space. Bull. Amer. Math. Soc., 74, 305-309. 10.1090/S0002-9904-1968-11933-0.

25.

Nyikos, P.J.;. (1999). On some non-Archimedean spaces of Alexandrof and Urysohn. Topology Appl., 91, 1-23. 10.1016/S0166-8641(97)00239-3.

26.

Moslehian, M.S.;Sadeghi, Gh.;. (2008). A Mazur-Ulam theorem in non-Archimedean normed spaces. Nonlinear Anal.-TMA, 69, 3405-3408. 10.1016/j.na.2007.09.023.

27.

Moslehian, M.S.;. (2006). On the stability of the orthogonal Pexiderized Cauchy equation. J. Math. Anal. Appl., 318, 211-223. 10.1016/j.jmaa.2005.05.052.

28.

Kadison, R.V.;Ringrose, J.R.;. Fundamentals of the Theory of Operator Algebras.

29.

Jung, S.;. Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis.

30.

Moslehian, M.S.;Rassias, M.;. (2007). Orthogonal stability of additive type equations. Aequationes Math., 73, 249-259. 10.1007/s00010-006-2868-0.

31.

Moslehian, M.S.;. (2005). On the orthogonal stability of the Pexiderized quadratic equation. J. Difference Equat. Appl., 11, 999-1004. 10.1080/10236190500273226.

32.

Mirzavaziri, M.;Moslehian, M.S.;. (2006). A fixed point approach to stability of a quadratic equation. Bull. Braz. Math. Soc., 37, 361-376. 10.1007/s00574-006-0016-z.

33.

Miheţ, D.;Rad, V.;. (2008). On the stability of the additive Cauchy functional equation in random normed spaces. J. Math. Anal. Appl., 343, 567-572. 10.1016/j.jmaa.2008.01.100.

34.

Khrennikov, A.;. Non-Archimedean analysis: quantum paradoxes, dynamical systems and biological models..

35.

Katsaras, A.K.;Beoyiannis, A.;. (1999). Tensor products of non-Archimedean weighted spaces of continuous functions. Georgian Math. J., 6, 33-44. 10.1023/A:1022926309318.

36.

editor RassiasM.;. Functional Equations, Inequalities and Applications.

37.

Rassias, M.;. (2000). On the stability of functional equations in Banach spaces. J. Math. Anal. Appl., 251, 264-284. 10.1006/jmaa.2000.7046.

38.

Rassias, M.;. (1978). On the stability of the linear mapping in Banach spaces. Proc. Amer. Math. Soc., 72, 297-300. 10.1090/S0002-9939-1978-0507327-1.

39.

Rassias, M.;. (2000). The problem of S.M. Ulam for approximately multiplicative mappings. J. Math. Anal. Appl., 246, 352-378. 10.1006/jmaa.2000.6788.

40.

Rassias, M.;. (1998). On the stability of the quadratic functional equation and its applications. Studia Univ. Babeş-Bolyai Math., 43, 89-124.

41.

Radu, V.;. (2003). The fixed point alternative and the stability of functional equations. Fixed Point Theory, 4, 91-96.

42.

Pinsker, A.G.;. (1938). Sur une fonctionnelle dans l’espace de Hilbert. C. R. (Dokl.) Acad. Sci. URSS, n. Ser., 20, 411-414.

43.

Park, C.;Park, J.;. (2006). Generalized Hyers-Ulam stability of an Euler-Lagrange type additive mapping. J. Difference Equat. Appl., 12, 1277-1288. 10.1080/10236190600986925.

44.

Park, C.;. (2008). Generalized Hyers-Ulam-Rassias stability of quadratic functional equations: a fixed point approach. Fixed Point Theory and Applications, 2008.

45.

Park, C.;. (2007). Fixed points and Hyers-Ulam-Rassias stability of Cauchy-Jensen functional equations in Banach algebras. Fixed Point Theory and Applications, 2007.

46.

Paganoni, L.;Rätz, J.;. (1995). Conditional function equations and orthogonal additivity. Aequationes Math., 50, 135-142. 10.1007/BF01831116.

47.

Vajzović, F.;. (1967). Über das Funktional H mit der Eigenschaft: (x, y) = 0 ⇒ H(x + y) +H(x - y) = 2H(x) + 2H(y). Glasnik Mat. Ser. III, 2(22), 73-81.

48.

Ulam, S.M.;. Problems in Modern Mathematics.

49.

Szabó, Gy.;. (1990). Sesquilinear-orthogonally quadratic mappings. Aequationes Math., 40, 190-200. 10.1007/BF02112295.

50.

Sundaresan, K.;. (1972). Orthogonality and nonlinear functionals on Banach spaces. Proc. Amer. Math. Soc., 34, 187-190. 10.1090/S0002-9939-1972-0291835-X.

51.

Skof, F.;. (1983). Proprietà locali e approssimazione di operatori. Rend. Sem. Mat. Fis. Milano, 53, 113-129. 10.1007/BF02924890.

52.

Rätz, J.;Szabó, Gy.;. (1989). On orthogonally additive mappings IV. Aequationes Math., 38, 73-85. 10.1007/BF01839496.

53.

Rätz, J.;. (1985). On orthogonally additive mappings. Aequationes Math., 28, 35-49. 10.1007/BF02189390.

Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics