ISSN : 1226-0657
We present smooth simply connected closed 4k-dimensional manifolds N := N<sub>k</sub>, for each k ∈ {2, 3, ⋯}, with distinct symplectic deformation equivalence classes [[ω<sub>i</sub>]], i = 1, 2. To distinguish [[ω<sub>i</sub>]]’s, we used the symplectic Z invariant in <xref>[4]</xref> which depends only on the symplectic deformation equivalence class. We have computed that Z(N, [[ω<sub>1</sub>]]) = ∞ and Z(N, [[ω<sub>2</sub>]]) < 0.
McDuff, D.;Salamon, D.;. Introduction to Symplectic Topology.
Kim, J.;Sung, C.;. (0000). Scalar Curvature Functions of Almost-Kӓhler Metrics. Jour of Geometric Anal., .
Kim, J.;. (2014). A simply connected manifold with two symplectic deformation equivalence classes with distinct signs of scalar curvatures. Comm. Korean Math. Soc., 29, 549-554. 10.4134/CKMS.2014.29.4.549.
Catanese, F.;LeBrun, C.;. (1997). On the scalar curvature of Einstein manifolds. Math. Research Letters, 4, 843-854. 10.4310/MRL.1997.v4.n6.a5.
Barlow, R.;. (1985). A Simply Connected Surface of General Type with <TEX>$p_g$</TEX> = 0. Invent. Math., 79, 293-301. 10.1007/BF01388974.
Ruan, Y.;. (1994). Symplectic topology on algebraic 3-folds. J. Differential Geom., 39, 215-227.
McMullen, C.T.;Taubes, C.H.;. 4-manifolds with inequivalent symplectic forms and 3-manifolds with inequivalent fibrations.
Salamon, D.;. (2013). Uniqueness of symplectic structures. Acta Math. Vietnam, 38, 123-144. 10.1007/s40306-012-0004-x.