바로가기메뉴

본문 바로가기 주메뉴 바로가기

logo

UNIFORMLY LIPSCHITZ STABILITY AND ASYMPTOTIC PROPERTY IN PERTURBED NONLINEAR DIFFERENTIAL SYSTEMS

Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics / Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics, (P)1226-0657; (E)2287-6081
2016, v.23 no.1, pp.1-12
https://doi.org/10.7468/jksmeb.2016.23.1.1
CHOI, SANG IL
GOO, YOON HOE
  • Downloaded
  • Viewed

Abstract

This paper shows that the solutions to the perturbed differential system <TEX>$y^{\prime}=f(t, y)+\int_{to}^{t}g(s,y(s),Ty(s))ds+h(t,y(t))$</TEX> have asymptotic property and uniform Lipschitz stability. To show these properties, we impose conditions on the perturbed part <TEX>$\int_{to}^{t}g(s,y(s),Ty(s))ds+h(t,y(t))$</TEX>, and on the fundamental matrix of the unperturbed system y' = f(t, y).

keywords
uniformly Lipschitz stability, uniformly Lipschitz stability in variation, exponentially asymptotic stability, exponentially asymptotic stability in variation

Reference

1.

Alekseev, V.M.;. (1961). An estimate for the perturbations of the solutions of ordinary differential equations. Vestn. Mosk. Univ. Ser. I. Math. Mekh., 2, 28-36.

2.

Brauer, F.;. (1966). Perturbations of nonlinear systems of differential equations. J. Math. Anal. Appl., 14, 198-206. 10.1016/0022-247X(66)90021-7.

3.

Choi, S.I.;Goo, Y.H.;. (2014). Lipschitz and asymptotic stability for nonlinear perturbed differential systems. J. Chungcheong Math. Soc., 27.

4.

Choi, S.I.;Goo, Y.H.;. (2015). Boundedness in perturbed nonlinear functional differential systems. J. Chungcheong Math. Soc., 28, 217-228. 10.14403/jcms.2015.28.2.217.

5.

Choi, S.I.;Goo, Y.H.;. (2015). Lipschitz and asymptotic stability of nonlinear systems of perturbed differential equations. Korean J. Math., 23, 181-197. 10.11568/kjm.2015.23.1.181.

6.

Choi, S.K.;Goo, Y.H.;Koo, N.J.;. (1997). Lipschitz and exponential asymptotic stability fornonlinear functional systems. Dynamic Systems and Applications, 6, 397-410.

7.

Choi, S.K.;Koo, N.J.;Song, S.M.;. (1999). Lipschitz stability for nonlinear functional differential systems. Far East J. Math. Sci(FJMS), 5, 689-708.

8.

Dannan, F.M.;Elaydi, S.;. (1986). Lipschitz stability of nonlinear systems of differential systems. J. Math. Anal. Appl., 113, 562-577. 10.1016/0022-247X(86)90325-2.

9.

Elaydi, S.;Farran, H.R.;. (1987). Exponentially asymptotically stable dynamical systems. Appl. Anal., 25, 243-252. 10.1080/00036818708839688.

10.

Gonzalez, P.;Pinto, M.;. (1994). Stability properties of the solutions of the nonlinear functional differential systems. J. Math. Appl., 181, 562-573.

11.

Goo, Y.H.;. (2014). Lipschitz and asymptotic stability for perturbed nonlinear differential systems. J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math., 21, 11-21.

12.

Goo, Y.H.;. (2015). Perturbations in nonlinear perturbed differential systems. Far East J. Math. Sci(FJMS), 98, 671-687. 10.17654/FJMSNov2015_671_687.

13.

Im, D.M.;Goo, Y.H.;. (2015). Asymptotic property for perturbed nonlinear functional differential systems. J. Appl. Math. and Informatics, 33, 687-697. 10.14317/jami.2015.687.

14.

Lakshmikantham, V.;Leela, S.;. Differential and Integral Inequalities: Theory and Applications Vol. I.

15.

Pachpatte, B.G.;. (1975). Perturbations of nonlinear systems of differential equations. J. Math. Anal. Appl., 51, 550-556. 10.1016/0022-247X(75)90106-7.

16.

Pachpatte, B.G.;. (1974). Stability and asymptotic behavior of perturbed nonlinear systems. J. Math. Anal. Appl., 16, 14-25.

Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics