바로가기메뉴

본문 바로가기 주메뉴 바로가기

ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

logo

  • P-ISSN1226-0657
  • E-ISSN2287-6081
  • KCI

JORDAN DERIVATIONS ON A LIE IDEAL OF A SEMIPRIME RING AND THEIR APPLICATIONS IN BANACH ALGEBRAS

JORDAN DERIVATIONS ON A LIE IDEAL OF A SEMIPRIME RING AND THEIR APPLICATIONS IN BANACH ALGEBRAS

한국수학교육학회지시리즈B:순수및응용수학 / Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics, (P)1226-0657; (E)2287-6081
2016, v.23 no.4, pp.347-375
https://doi.org/10.7468/jksmeb.2016.23.4.347
Kim, Byung-Do (Department of Mathematics, Gangneung-Wonju National University)

Abstract

Let R be a 3!-torsion free noncommutative semiprime ring, U a Lie ideal of R, and let <TEX>$D:R{\rightarrow}R$</TEX> be a Jordan derivation. If [D(x), x]D(x) = 0 for all <TEX>$x{\in}U$</TEX>, then D(x)[D(x), x]y - yD(x)[D(x), x] = 0 for all <TEX>$x,y{\in}U$</TEX>. And also, if D(x)[D(x), x] = 0 for all <TEX>$x{\in}U$</TEX>, then [D(x), x]D(x)y - y[D(x), x]D(x) = 0 for all <TEX>$x,y{\in}U$</TEX>. And we shall give their applications in Banach algebras.

keywords
Banach algebra, (Jacobson) radical, derivation, Jordan derivation, Lie ideal, prime ring, semiprime ring

한국수학교육학회지시리즈B:순수및응용수학