QUADRATIC (ρ1,ρ2)-FUNCTIONAL INEQUALITY IN FUZZY BANACH SPACES
Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics / Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics, (P)1226-0657; (E)2287-6081
2017, v.24 no.3, pp.179-190
https://doi.org/10.7468/jksmeb.2017.24.3.179
Park, Junha
Jo, Younghun
Kim, Jaemin
Kim, Taekseung
Park,,
J.
, Jo,,
Y.
, Kim,,
J.
, &
Kim,,
T.
(2017). QUADRATIC (ρ1,ρ2)-FUNCTIONAL INEQUALITY IN FUZZY BANACH SPACES. Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics, 24(3), 179-190, https://doi.org/10.7468/jksmeb.2017.24.3.179
Abstract
In this paper, we introduce and solve the following quadratic (<TEX>${\rho}_1$</TEX>, <TEX>${\rho}_2$</TEX>)-functional inequality (0.1) <TEX>$$N\left(2f({\frac{x+y}{2}})+2f({\frac{x-y}{2}})-f(x)-f(y),t\right){\leq}min\left(N({\rho}_1(f(x+y)+f(x-y)-2f(x)-2f(y)),t),\;N({\rho}_2(4f(\frac{x+y}{2})+f(x-y)-2f(x)-2f(y)),t)\right)$$</TEX> in fuzzy normed spaces, where <TEX>${\rho}_1</TEX><TEX>$</TEX> and <TEX>${\rho}_2$</TEX> are fixed nonzero real numbers with <TEX>${{\frac{1}{{4\left|{\rho}_1\right|}}+{{\frac{1}{{4\left|{\rho}_2\right|}}$</TEX> < 1, and f(0) = 0. Using the fixed point method, we prove the Hyers-Ulam stability of the quadratic (<TEX>${\rho}_1$</TEX>, <TEX>${\rho}_2$</TEX>)-functional inequality (0.1) in fuzzy Banach spaces.
- keywords
-
fuzzy Banach space,
quadratic (<tex> ${\rho}_1$</tex>,
<tex> ${\rho}_2$</tex>)-functional inequality,
fixed point method,
Hyers-Ulam stability