QUADRATIC (ρ<sub>1</sub>, ρ<sub>2</sub>)-FUNCTIONAL INEQUALITY IN FUZZY BANACH SPACES
QUADRATIC (ρ1,ρ2)-FUNCTIONAL INEQUALITY IN FUZZY BANACH SPACES
한국수학교육학회지시리즈B:순수및응용수학 / Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics, (P)1226-0657; (E)2287-6081
2017, v.24 no.3, pp.179-190
https://doi.org/10.7468/jksmeb.2017.24.3.179
Park, Junha
(Mathematics Branch, Seoul Science High School)
Jo, Younghun
(Mathematics Branch, Seoul Science High School)
Kim, Jaemin
(Mathematics Branch, Seoul Science High School)
Kim, Taekseung
(Mathematics Branch, Seoul Science High School)
Park, Junha,
Jo, Younghun,
Kim, Jaemin,
&
Kim, Taekseung.
(2017). QUADRATIC (ρ<sub>1</sub>, ρ<sub>2</sub>)-FUNCTIONAL INEQUALITY IN FUZZY BANACH SPACES. 한국수학교육학회지시리즈B:순수및응용수학, 24(3), 179-190, https://doi.org/10.7468/jksmeb.2017.24.3.179
Abstract
In this paper, we introduce and solve the following quadratic (<TEX>${\rho}_1$</TEX>, <TEX>${\rho}_2$</TEX>)-functional inequality (0.1) <TEX>$$N\left(2f({\frac{x+y}{2}})+2f({\frac{x-y}{2}})-f(x)-f(y),t\right){\leq}min\left(N({\rho}_1(f(x+y)+f(x-y)-2f(x)-2f(y)),t),\;N({\rho}_2(4f(\frac{x+y}{2})+f(x-y)-2f(x)-2f(y)),t)\right)$$</TEX> in fuzzy normed spaces, where <TEX>${\rho}_1</TEX><TEX>$</TEX> and <TEX>${\rho}_2$</TEX> are fixed nonzero real numbers with <TEX>${{\frac{1}{{4\left|{\rho}_1\right|}}+{{\frac{1}{{4\left|{\rho}_2\right|}}$</TEX> < 1, and f(0) = 0. Using the fixed point method, we prove the Hyers-Ulam stability of the quadratic (<TEX>${\rho}_1$</TEX>, <TEX>${\rho}_2$</TEX>)-functional inequality (0.1) in fuzzy Banach spaces.
- keywords
-
fuzzy Banach space,
quadratic (<tex> ${\rho}_1$</tex>,
<tex> ${\rho}_2$</tex>)-functional inequality,
fixed point method,
Hyers-Ulam stability