바로가기메뉴

본문 바로가기 주메뉴 바로가기

ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

logo

  • P-ISSN1226-0657
  • E-ISSN2287-6081
  • KCI

QUADRATIC (&#961;<sub>1</sub>, &#961;<sub>2</sub>)-FUNCTIONAL INEQUALITY IN FUZZY BANACH SPACES

QUADRATIC (ρ1,ρ2)-FUNCTIONAL INEQUALITY IN FUZZY BANACH SPACES

한국수학교육학회지시리즈B:순수및응용수학 / Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics, (P)1226-0657; (E)2287-6081
2017, v.24 no.3, pp.179-190
https://doi.org/10.7468/jksmeb.2017.24.3.179
Park, Junha (Mathematics Branch, Seoul Science High School)
Jo, Younghun (Mathematics Branch, Seoul Science High School)
Kim, Jaemin (Mathematics Branch, Seoul Science High School)
Kim, Taekseung (Mathematics Branch, Seoul Science High School)

Abstract

In this paper, we introduce and solve the following quadratic (<TEX>${\rho}_1$</TEX>, <TEX>${\rho}_2$</TEX>)-functional inequality (0.1) <TEX>$$N\left(2f({\frac{x+y}{2}})+2f({\frac{x-y}{2}})-f(x)-f(y),t\right){\leq}min\left(N({\rho}_1(f(x+y)+f(x-y)-2f(x)-2f(y)),t),\;N({\rho}_2(4f(\frac{x+y}{2})+f(x-y)-2f(x)-2f(y)),t)\right)$$</TEX> in fuzzy normed spaces, where <TEX>${\rho}_1</TEX><TEX>$</TEX> and <TEX>${\rho}_2$</TEX> are fixed nonzero real numbers with <TEX>${{\frac{1}{{4\left|{\rho}_1\right|}}+{{\frac{1}{{4\left|{\rho}_2\right|}}$</TEX> < 1, and f(0) = 0. Using the fixed point method, we prove the Hyers-Ulam stability of the quadratic (<TEX>${\rho}_1$</TEX>, <TEX>${\rho}_2$</TEX>)-functional inequality (0.1) in fuzzy Banach spaces.

keywords
fuzzy Banach space, quadratic (<tex> ${\rho}_1$</tex>, <tex> ${\rho}_2$</tex>)-functional inequality, fixed point method, Hyers-Ulam stability

한국수학교육학회지시리즈B:순수및응용수학