바로가기메뉴

본문 바로가기 주메뉴 바로가기

ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

logo

  • P-ISSN1226-0657
  • E-ISSN2287-6081
  • KCI

ADDITIVE ρ-FUNCTIONAL EQUATIONS IN NON-ARCHIMEDEAN BANACH SPACE

ADDITIVE ρ-FUNCTIONAL EQUATIONS IN NON-ARCHIMEDEAN BANACH SPACE

한국수학교육학회지시리즈B:순수및응용수학 / Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics, (P)1226-0657; (E)2287-6081
2018, v.25 no.3, pp.219-227
https://doi.org/10.7468/jksmeb.2018.25.3.219
Paokanta, Siriluk (Department of Mathematics, Research Institute for Natural Sciences, Hanyang University)
Shim, Eon Hwa (Department of Mathematics, Daejin University)

Abstract

In this paper, we solve the additive <TEX>${\rho}$</TEX>-functional equations <TEX>$$(0.1)\;f(x+y)+f(x-y)-2f(x)={\rho}\left(2f\left({\frac{x+y}{2}}\right)+f(x-y)-2f(x)\right)$$</TEX>, where <TEX>${\rho}$</TEX> is a fixed non-Archimedean number with <TEX>${\mid}{\rho}{\mid}$</TEX> < 1, and <TEX>$$(0.2)\;2f\left({\frac{x+y}{2}}\right)+f(x-y)-2f(x)={\rho}(f(x+y)+f(x-y)-2f(x))$$</TEX>, where <TEX>${\rho}$</TEX> is a fixed non-Archimedean number with <TEX>${\mid}{\rho}{\mid}$</TEX> < |2|. Furthermore, we prove the Hyers-Ulam stability of the additive <TEX>${\rho}$</TEX>-functional equations (0.1) and (0.2) in non-Archimedean Banach spaces.

keywords
Hyers-Ulam stability, non-Archimedean normed space, additive <tex> ${\rho}$</tex>-functional equation

한국수학교육학회지시리즈B:순수및응용수학