바로가기메뉴

본문 바로가기 주메뉴 바로가기

ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

logo

  • P-ISSN1226-0657
  • E-ISSN2287-6081
  • KCI

SOME GENERALIZATIONS OF M-FINITE BANACH SPACES

한국수학교육학회지시리즈B:순수및응용수학 / Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics, (P)1226-0657; (E)2287-6081
1996, v.3 no.2, pp.155-162
Cha, Jae-Sun (Department of Mathematics Education, Dankook University)
Jung, Kap-Hun (Department of Mathematics, Dankook University)

Abstract

We will show that let X and Y be M -finite Banach spaces with canonical M-decompositions <TEX>$X{\cong}{{\prod}^{{\gamma}_{\infty}}_{i=1}}{X^{n_i}}_{i}\;and\;Y{\cong}{{\prod}^{{\bar{\gamma}}_{\infty}}_{j=1}}{\tilde{Y}^{m_j}}_{j}$</TEX>, respectively and M and N nonzero locally compact Hausdorff spaces. Then I : <TEX>$C_{0}$</TEX>(M,X) <TEX>${\longrightarrow}\;C_{0}$</TEX>(N,Y) is an isometrical isomorphism if and only if r = <TEX>$\bar{r}$</TEX> and there are permutation and homeomorphisms and continuous maps such that I = <TEX>${I^{-1}}_{N.Y}\;{\circ}I_{w}^{-1}{\circ}({{\prod}^{\gamma}}_{i=1}I_{t_i,u_i}){\circ}I_{M,X}$</TEX>.

keywords

한국수학교육학회지시리즈B:순수및응용수학