ISSN : 1226-0657
We will show that let X and Y be M -finite Banach spaces with canonical M-decompositions <TEX>$X{\cong}{{\prod}^{{\gamma}_{\infty}}_{i=1}}{X^{n_i}}_{i}\;and\;Y{\cong}{{\prod}^{{\bar{\gamma}}_{\infty}}_{j=1}}{\tilde{Y}^{m_j}}_{j}$</TEX>, respectively and M and N nonzero locally compact Hausdorff spaces. Then I : <TEX>$C_{0}$</TEX>(M,X) <TEX>${\longrightarrow}\;C_{0}$</TEX>(N,Y) is an isometrical isomorphism if and only if r = <TEX>$\bar{r}$</TEX> and there are permutation and homeomorphisms and continuous maps such that I = <TEX>${I^{-1}}_{N.Y}\;{\circ}I_{w}^{-1}{\circ}({{\prod}^{\gamma}}_{i=1}I_{t_i,u_i}){\circ}I_{M,X}$</TEX>.