바로가기메뉴

본문 바로가기 주메뉴 바로가기

ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

logo

  • P-ISSN1226-0657
  • E-ISSN2287-6081
  • KCI

UNIQUENESS RELATED TO HIGHER ORDER DIFFERENCE OPERATORS OF ENTIRE FUNCTIONS

Uniqueness related to Higher Order Difference Operators of Entire Functions

한국수학교육학회지시리즈B:순수및응용수학 / Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics, (P)1226-0657; (E)2287-6081
2023, v.30 no.1, pp.43-65
https://doi.org/https://doi.org/10.7468/jksmeb.2023.30.1.43
Xinmei Liu (School of Mathematics and Statistics, Fujian Normal University)
Junfan Chen (School of Mathematics and Statistics, Fujian Normal University)

Abstract

In this paper, by using the difference analogue of Nevanlinna's theory, the authors study the shared-value problem concerning two higher order difference operators of a transcendental entire function with finite order. The following conclusion is proved: Let f(z) be a finite order transcendental entire function such that &#x03BB;(f - a(z)) < &#x03C1;(f), where a(z)(&#x2208; S(f)) is an entire function and satisfies &#x03C1;(a(z)) < 1, and let &#x1D702;(&#x2208; &#x2102;) be a constant such that &#x2206;<sub>&#x1D702;</sub><sup>n+1</sup> f(z) &#x2262; 0. If &#x2206;<sub>&#x1D702;</sub><sup>n+1</sup> f(z) and &#x2206;<sub>&#x1D702;</sub><sup>n</sup> f(z) share &#x2206;<sub>&#x1D702;</sub><sup>n</sup> a(z) CM, where &#x2206;<sub>&#x1D702;</sub><sup>n</sup> a(z) &#x2208; S &#x2206;<sub>&#x1D702;</sub><sup>n+1</sup> f(z), then f(z) has a specific expression f(z) = a(z) + Be<sup>Az</sup>, where A and B are two non-zero constants and a(z) reduces to a constant.

keywords
transcendental entire function, sharing value, higher order difference operator, uniqueness

한국수학교육학회지시리즈B:순수및응용수학