바로가기메뉴

본문 바로가기 주메뉴 바로가기

ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

logo

  • P-ISSN1226-0657
  • E-ISSN2287-6081
  • KCI

CONDITIONAL LARGE DEVIATIONS FOR 1-LATTICE DISTRIBUTIONS

한국수학교육학회지시리즈B:순수및응용수학 / Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics, (P)1226-0657; (E)2287-6081
1997, v.4 no.1, pp.97-104
Kim, Gie-Whan (Department of Mathematics, University of Oregon)

Abstract

The large deviations theorem of Cramer is extended to conditional probabilities in the following sense. Consider a random sample of pairs of random vectors and the sample means of each of the pairs. The probability that the first falls outside a certain convex set given that the second is fixed is shown to decrease with the sample size at an exponential rate which depends on the Kullback-Leibler distance between two distributions in an associated exponential familiy of distributions. Examples are given which include a method of computing the Bahadur exact slope for tests of certain composite hypotheses in exponential families.

keywords
large deviations, exponential families, testing hypotheses, Kullback-Leibler information

한국수학교육학회지시리즈B:순수및응용수학