바로가기메뉴

본문 바로가기 주메뉴 바로가기

logo

Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics / Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics, (P)1226-0657; (E)2287-6081
2001, v.8 no.2, pp.185-191
Koh, Young-Mee
Ree, Sang-Wook
  • Downloaded
  • Viewed

Abstract

A k-hypertournament is a complete k-hypergraph with all k-edges endowed with orientations, i.e., orderings of the vertices in the edges. The incidence matrix associated with a k-hypertournament is called a 7-hypertournament matrix, where each row stands for a vertex of the hypertournament. Some properties of the hypertournament matrices are investigated. The sequences of the numbers of 1's and -1's of rows of a k-hypertournament matrix are respectively called the score sequence (resp. losing score sequence) of the matrix and so of the corresponding hypertournament. A necessary and sufficient condition for a sequence to be the score sequence (resp. the losing score sequence) of a k-hypertournament is proved.

keywords
hypertournament, score sequence, hypertournament matrices

Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics