ISSN : 3059-0604
Let G be a connected graph. A pebbling move on a graph G is the movement of taking two pebbles off from a vertex and placing one of them onto an adjacent vertex. The pebbling number f(G) of a connected graph G is the least n such that any distribution of n pebbles on the vertices of G allows one pebble to be moved to any specified, but arbitrary vertex by a sequence of pebbling moves. In this paper, the pebbling numbers of the compositions of two graphs are computed.