바로가기메뉴

본문 바로가기 주메뉴 바로가기

ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

logo

  • P-ISSN1226-0657
  • E-ISSN2287-6081
  • KCI

THEOREMS OF LIOUVILLE TYPE FOR QUASI-STRONGLY <TEX>$\rho$</TEX>-HARMONIC MAPS

THEOREMS OF LIOUVILLE TYPE FORQUASI-STRONGLY p-HARMONIC MAPS

한국수학교육학회지시리즈B:순수및응용수학 / Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics, (P)1226-0657; (E)2287-6081
2002, v.9 no.2, pp.107-111
Yun, Gab-Jin (Department of Mathematics, Myongji University)

Abstract

In this article, we prove various properties and some Liouville type theorems for quasi-strongly p-harmonic maps. We also describe conditions that quasi-strongly p-harmonic maps become p-harmonic maps. We prove that if <TEX>$\phi$</TEX> : <TEX>$M\;\longrightarrow\;N$</TEX> is a quasi-strongly p-harmonic map (\rho\; <TEX>$\geq\;2$</TEX>) from a complete noncompact Riemannian manifold M of nonnegative Ricci curvature into a Riemannian manifold N of non-positive sectional curvature such that the <TEx>$(2\rho-2)$</TEX>-energy, <TEX>$E_{2p-2}(\phi)$</TEX> is finite, then <TEX>$\phi$</TEX> is constant.

keywords
harmonic maps, p-harmonic map, quasi-strongly p-harmonic maps

한국수학교육학회지시리즈B:순수및응용수학