ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

  • P-ISSN1225-0163
  • E-ISSN2288-8985
  • SCOPUS, ESCI, KCI

논문 상세

Home > 논문 상세
  • P-ISSN 1225-0163
  • E-ISSN 2288-8985

논문 상세

    A comparison study of extraction methods for bio-liquid via hydrothermal carbonization of food waste

    분석과학 / Analytical Science and Technology, (P)1225-0163; (E)2288-8985
    2018, v.31 no.3, pp.112-121
    https://doi.org/10.5806/AST.2018.31.3.112
    방예진 (서울여자대학교)
    최민선 (서울여자대학교)
    배선영 (서울여자대학교)
    • 다운로드 수
    • 조회수

    Abstract

    The hydrothermal carbonization method has received great attention because of the conversion process from biomass. The reaction produces various products in hydrochar, bio-liquid, and gas. Even though its yield cannot be ignored in amount, it is difficult to find research papers on bio-liquid generated from the hydrothermal carbonization reaction of biomass. In particular, the heterogeneity of feedstock composition may make the characterization of bio-liquid different and difficult. In this study, bio-liquid from the hydrothermal carbonization reaction of food wastes at 230 °C for 4 h was investigated. Among various products, fatty acid methyl esters were analyzed using two different extraction methods: liquid-liquid extraction and column chromatography. Different elutions with various solvents enabled us to categorize the various components. The eluents and fractions obtained from two different extraction methods were analyzed by gas chromatography with a mass spectrometer (GC/MS). The composition of the bio-liquid in each fraction was characterized, and seven fatty acid methyl esters were identified using the library installed in GC/MS device.

    keywords
    Bio-liquid, Food waste, GC/MS, Column chromatography, Liquid-liquid extraction, Fatty acid methyl ester


    참고문헌

    1

    Ministry of Environment, 2012 Statistics of treatment and waste generation in Korea, 2013.

    2

    M. Choi, S. Lee, and S. Bae, Anal. Sci. & Tech., 30, 174-181 (2017).

    3

    K. S. Ro, J. R. V. Flora, S. Bae, J. A. Libra, N. B. Berge, A. Alvarez-Murillo, and L. Li, ACS Sustain. Chem. Eng., 5, 7317-7324 (2017).

    4

    S. Roman, N. Berge, E. Sabio, K. Ro, L. Li, B. Ledesma, A. Alvarez-Murillo, and S. Bae, Energies., 11, 216 (2018).

    5

    S. Xiu and A. Shahbazi, Renew. Sust. Energ. Rev., 16, 4406-4414 (2012).

    6

    K. Sipila, E. Kuoppala, L. Fagernas, and A. Oasmaa, Biomass Bioenergy, 14, 103-113 (1998).

    7

    D. Mohan, C. U. Pittman, and P. H. Steele, Energ. Fuels., 20, 848-889 (2006).

    8

    N. Mahinpey, P. Murugan, T. Mani, and R. Raina, Energ. Fuels., 23, 2736-2742 (2009).

    9

    A. Oasmaa, E. Kuoppala, and Y. Solantausta, Energ. Fuels., 17, 1-12 (2003).

    10

    A. Oasmaa, E. Kuoppala, and Y. Solantausta, Energ. Fuels., 17, 433-443 (2003).

    11

    C. Amen-Chen, H. Pakdel, and C. Roy, Biomass Bioenergy, 13, 25-37 (1997).

    12

    T. C. Ba, Energ. Fuels., 18, 188-20 (2004).

    13

    P. Das, T. Sreelatha, and A. Ganesh, Biomass Bioenergy, 27, 265-275 (2004).

    14

    B. Donnis, R. G. Egeberg, P. Blom, and K. G. Knudsen, Top. Catal., 52, 229-240 (2009).

    15

    Q. Zhang, J. Chang, and Y. Xu, Energ. Fuels., 20, 2717-2720 (2006).

    16

    M. Ertas and M. H. Alma, J. Anal. Appl. Pyrolysis, 88, 22-29 (2010).

    17

    Z. Wang, W. Lin, and W. Song, Appl. Energy, 97, 56-60 (2012).

    상단으로 이동

    분석과학