Article Detail

Home > Article Detail
  • P-ISSN 1225-0163
  • E-ISSN 2288-8985

Article Contents

    Lead isotope measurement of geological reference materials using thermal ionization mass spectrometry

    Analytical Science and Technology / Analytical Science and Technology, (P)1225-0163; (E)2288-8985
    2020, v.33 no.6, pp.245-251
    https://doi.org/10.5806/AST.2020.33.6.245



    • Downloaded
    • Viewed

    Abstract

    Lead (Pb) has been shown to be a useful tracer of contamination sources and geochemical processes such as age dating and crustal evolution. These studies require a chromatographic technique for Pb separation from geological samples. This paper presents a comparison study on the effect of eluent concentration between 6M HCl and 8M HCl on the separation of Pb from Pb resin. The results showed that the separation of Pb using 6M HCl as the eluent was not effective compared to the separation using 8M HCl. To verify this method, we measured the Pb isotopic compositions of the Pb isotopic standard (NIST NBS981) and geological reference materials (BCR-2, GSP-2, and JG-1a) using a thermal ionization mass spectrometer (TIMS). The results correspond well with the reported values within the error range, implying that this method can be useful

    keywords
    Pb isotope, TIMS, Pb separation, geological reference material


    Reference

    1

    1. C. Cloquet, J. Carignan, G. Libourel, T. Sterckeman and E. Perdrix, Envi. Sci. Tech., 40(8), 2525-2530 (2006).

    2

    2. A. T. Townsend and I. Snape, J. Anal. Atomic Spectrometry, 17, 922-928 (2002).

    3

    3. J-J. Park, K-J. Kim, S-M. Yoo, E-H. Kim, K-S. Seok, H.S. Shin and Y-H. Kim, Anal., Sci. Technol., 25(6), 429-434 (2012).

    4

    4. A. Simonettic, C. Gariepy and J. Carignan, Geochim. Cosmochim. Acta, 64, 5-20 (2000).

    5

    5. J-H. Kang, H. Hwang, C. Han, S. D. Hur, S-J. Kim and S. Hong, Chemosphere, 187, 294-301 (2017).

    6

    6. E. W. Lee, S. J. Kim, W. R. Han, M. S. Han and J. J. Hwang, J. Conservation Sci. Korea, 30(4), 345-351(2014).

    7

    7. H-M. Lee, S-G. Lee and T. Tanaka, J. Petrol. Soc. Korea, 24(4), 365-371 (2015).

    8

    8. H. B. Choi, J. S. Ryu, S. Park and J. Lee, J. Geol. Soc. Korea, 54(3), 311-318 (2018).

    9

    9. I. Raczek, B. Stoll, A. W. Hofmann and K. P. Jochum, Geostand. Newsl., 25(2), 77-86 (2001).

    10

    10. A. Ando, H. Kamioka, S. Terashima and S. Itoh, Geochem. J., 23, 143-148 (1989).

    11

    11. T. Yokoyama, A. Makishima and E. Nakamura, Chem. Geol., 157, 175-187 (2010).

    12

    12. E. P. Horwitz, M. L. Dietz, S. Rhoads, C. Felinto, N. H. Gale and J. Houghton, Anal. Chim. Acta, 292(3), 263-273 (1994).

    13

    13. C. Deniel and C. Pin, Anal. Chim. Acta, 426, 95-103(2001).

    14

    14. H. D. Holland and K. K. Turekian, ‘Treatise of Geochemistry’, 1st Ed., Elsevier, 2004.

    15

    15. W. Todt, R. A. Cliff, A. Hanser and A. W. Hofmann, Earth Processes: Reading the Isotopic Code, 429-437(1996).

    16

    16. H. Yuan, W. Yuan, C. Cheng, P. Liang, X. Liu, M. Dai, Z. Bao, C. Zong, K. Chen and S. Lai, Solid Earth Sci., 1, 74-78 (2016).

    17

    17. D. Weis, B. Kieffer, C. Maerschalk, J. Barling, J. de Jong, G. Williams, N. Mattielli, J. S. Scoates, R. M. Friedman and J. B. Mahoney, Geochem. Geophys. Geosyst., 7, 8 (2006). https://doi.org/10.1029/2006GC001283.

    18

    18. M. Tanimizu and T. Ishikawa, Geochem. J., 40, 121-133 (2006)

    상단으로 이동

    Analytical Science and Technology