- P-ISSN 1225-0163
- E-ISSN 2288-8985
본 연구에서는 기체 크로마토그래피-불꽃이온화검출기(GC-FID)를 이용한 고순도 질소의 새로운순도분석법을 개발하였다. 고순도 질소에 존재할 수 있는 불순물인 일산화탄소(CO), 이산화탄소(CO2), 및메탄(CH4)에 대한 3 μmol/mol 수준의 인증표준물질(Certified reference material, CRM)을 중량법을 이용하여 제조하였고, 이를 순도분석에 활용하였다. 개발된 순도분석법에서는 운반가스로 초고순도 질소와순도분석 대상 질소를 사용하여, 제조된 인증표준물질의 기체 크로마토그래피에서 얻어지는 크로마토그램의 면적 값 차이를 비교함으로써 순도분석 대상 질소의 불순물을 정량 분석하였다. 순도분석 대상 질소로는 액체질소 및 제조사가 각기 다른 3곳의 고순도 질소를 사용하였다. 또한, 개발된 순도분석법의 유효성을 평가하기 위하여 순도분석 대상 질소 내 불순물의 물질량 분율을 기존 순도분석법과 비교하였다. 두 가지 순도분석법을 이용하였을 때 대상 질소 내 불순물의 물질량 분율이 불확도 (k = 2) 내에서 서로일치함을 확인함으로써, 개발된 순도분석법이 유효함을 확인하였다.
In this study, a new method for the analysis of high-purity nitrogen was developed. A gas chromatography-flame ionization detector (GC-FID) was used for purity analysis. Certified reference materials (CRMs) at a level of 3 μmol/mol of carbon monoxide (CO), carbon dioxide (CO2), and methane (CH4), which may exist in high-purity nitrogen, were prepared using the gravimetric method, and these CRMs were used for purity analysis. In this new method, ultra-high-purity and high-purity nitrogen were used as carrier gases. The impurities in high-purity nitrogen were quantitatively analyzed by comparing the differences in the area values of the GC chromatograms of the prepared CRMs. We purchased liquid nitrogen and three bottles of nitrogen gas, which were produced by three different manufacturers, using high-purity nitrogen. Furthermore, to validate the developed purity analysis method, the fraction of impurities in high-purity nitrogen was compared with the results of the typical purity analysis method. The comparison results were consistent within the expanded uncertainties (k = 2).
1. Y. W. You, D. G. Lee, K. Y. Yoon, D. K. Moon, S. M. Kim, and C. H. Lee, International Journal of Hydrogen Energy, 37(23), 18175-18186 (2012).
2. International Organization for Standardization, ISO 19229:2015 Gas analysis – Purity analysis and the treatment of purity data, Geneva, 2015.
3. P. Coning and J. Swinley, In ‘A Practical Guide to Gas Analysis by Gas Chromatography’, p 45-75, Elsevier Inc., Amasterdam, 2019.
4. W. Jennings, E. Mittlefehldt, and S. Phillip, ‘Analytical gas chromatography’, 2nd Ed. Academic Press, 1997.
5. O. Zuas and M. R. Mulyana, French-Ukrainian Journal of Chemistry, 5(1), 35-47 (2017).
6. P. S. Yong and H. M. Moon, Journal of Industrial and Engineering Chemistry, 8(6), 499-505 (2002).
7. M. R. Mulyana, H. Budiman, O. Zuas, and A. Hindayani, Journal of Physics, 1153(1), 012035 (2019).
8. P. Coning and J. Swinley, ‘A Practical Guide to Gas Analysis by Gas Chromatography’, Elsevier Inc., Amasterdam, 2019.
9. G. Castello and G. D’Amato, Journal of Chromatography A, 32, 625-634 (1968).
10. International Organization for Standardization, ISO 17034:2016 General requirements for the competence of reference material producers, Geneva, 2016.
11. International Organization for Standardization, ISO 6142-1:2015 Gas analysis - Preparation of calibration gas mixtures – Part 1: Gravimetric method for Class I mixtures, Geneva, 2015.
12. M. J. T. Milton, G. M. Vargha, and A. S. Brown, Metrologia, 48, R1-R9 (2011).
13. J. E. Kim, J. B. Lee, J. S. Kim, I. Yang, and K. Hong, Metrologia, 59, 055003 (2022).
14. S. H. Oh, B. M. Kim, and N. Kang, Metrologia, 50(4), 318-324 (2013).
15. N. Matsumoto, T. Watanabe, M. Maruyama, Y. Horimoto, T. Maeda, and K. Kato, Metrologia, 41, 178-188 (2004).
16. B. S. Ahn, D. M. Moon, J. B. Lee, J. S. Kim, J. H. Lee, and K. Hong, Analytical Science and Technology, 33(2), 68-75 (2020).
17. M. J. T. Milton, F. Guenther, W. R. Miller, and A. S. Brown, Metrologia, 43, L7- L10 (2006).