바로가기메뉴

본문 바로가기 주메뉴 바로가기

(사)한국터널지하공간학회

Vol.6 No.5

LEE, Jong-Sub ; Jungdoung Yu pp.385-401
초록보기
Abstract

Rock bolts play a crucial role in reinforcing rock slopes. However, a poorly grouted rock bolt occasionally occurs, potentially compromising the stability of a rock slope. The purpose of this study is to evaluate the integrity of a rock bolt using sound waves. In experiments, a total of five rock bolts are prepared, one of which is intact while the other four are poorly grouted. The grouted ratios of four poorly grouted rock bolts are 80%, 70%, 60%, and 50%, respectively, and nongrouted sections are introduced at the upper part of the rock bolts. Rock bolts are installed in a concrete block to simulate rock bolts embedded in a rock slope. Sound waves are generated by impacting the head of the rock bolt and measured using the built-in microphone of a smartphone. Measured sound waves are analyzed in frequency domain through Fourier transform. Results show that the predominant frequency of sound waves decreases as the grouted ratio decreases. This study suggests that the predominant frequency of sound waves can be an effective indicator for evaluating the integrity of the rock bolt.

Youngmin Yoon ; Jeon, Seokwon pp.403-419
초록보기
Abstract

Advance rate significantly affects both the construction period and cost in tunnel blasting. As such, there has been persistent research dedicated to the development of innovative blasting technique aimed at enhancing the advance rate. This paper aims to provide fundamental insights into the differences in advance rate and the powder factor between two- and three-free-face blasting, laying the groundwork for the advancement of tunnel blasting techniques. Large-scale cement mortar specimens were fabricated, and blasting tests were conducted for both two- and three-free-face blasting. Experimental findings were then compared with those from numerical simulation. Notably, an increase in the number of free faces, under uniform conditions, significantly improved the advance rate while reducing the powder factor. The outcomes of this study serve as crucial groundwork for devising blasting patterns employing three-free-face blasting, characterized by improved advance rates and minimized powder factors. Consequently, the anticipated outcomes include an overall improvement in tunnel advance rates and a reduction in the number of drilling holes and the amounts of explosives.

Jeong Heum Kim pp.421-433
초록보기
Abstract

As the utilization of underground space increases, preventing collapse accidents during tunnel construction has become a significant challenge. This study aims to quantitatively assess the risk of tunnel collapse during construction by analyzing various influencing factors and proposing a tunnel collapse risk index based on these factors. For the 14 major influencing factors affecting tunnel collapse, weights were calculated using the analytic hierarchy process (AHP) method. Data from 27 collapse cases were collected, and Monte Carlo simulation was used to calculate the grade scores for each influencing factor. These scores were then synthesized to derive the tunnel collapse risk index. The average value of the tunnel collapse risk index was analyzed to be 49.359 points. Future comparisons with section-by-section evaluation results of tunnel collapse risk will allow for the assessment of whether a specific section has a lower or higher collapse risk. This study provides a systematic method for quantitatively evaluating the key factors of tunnel collapse risk, thereby contributing to the prevention of collapse accidents during tunnel construction and the establish- ment of appropriate countermeasures. Future research is expected to enhance the relia- bility of the tunnel collapse risk index by incorporating more field data and improving the accuracy of tunnel collapse risk assessment based on this index.

Ju-Young Oh ; Jaehwan Lee ; pp.435-448
초록보기
Abstract

Liquefaction of the ground caused by earthquakes results in significant damage to underground structures such as tunnels, pipelines, manholes, and underground tanks. The uplift of underground structures due to liquefaction has been identified as a major cause of this damage. However, current design practices have not adequately considered the upward displacement of underground structures. This paper proposes an analytical solution based on the limit equilibrium method for cut-and-cover tunnels. Using this solution, a sensitivity analysis was performed on soil cover height, lique- faction depth, ground improvement, and ledge. It was confirmed that the contribution of each factor to the safety factor can be reasonably derived through changes in the safety factor. Although there are still many assumptions and uncertainties that need to be reviewed for their appropriateness, a conservative approach appears to mitigate a significant portion of these uncertainties. This study is meaningful as a stability evaluation method considering the uplift behavior characteristics of underground structures.

Kang Han Byul ; Lee Jae-won ; Yim Ju Hyi ; Byoungcheol Ahn ; Youngjin Shin pp.449-461
초록보기
Abstract

The use of tunnel boring machine (TBM), a mechanized excavation method with low noise and vibration and high safety compared to NATM method, has increased globally. In particular, slurry shield TBMs are used in subsea and submarine sections because they have an advantage in high pressure compared to EPB (earth pressure balanced) methods. As such, the used water of slurry shield TBMs is discharged through wastewater treatment facilities. In the case of large-scale TBMs, the amount of water used is enormous, so it should be recycled to reduce costs and protect the environment. Various types of additives are used to improve the performance of the slurry treatment plant (STP) and filter press. Among them, coagulants improve the productivity of the filter press by neutralizing the charges on particles. In this study, lab tests were conducted to evaluate the reusability of the used water through the filter press after flocculants were added.

Yong Hag Kim ; Cho, Kook-Hwan pp.463-476
초록보기
Abstract

The shield TBM method can eliminate environmental hazards such as noise and vibration, and is environmentally friendly and allows safe tunnel construction even in soft ground conditions, but there are many restrictions on its application due to its high construction costs compared to the NATM. Therefore, in order to increase the appli- cability of the shield TBM method, it is necessary to ensure economic efficiency by reducing construction costs, and it is very important to reduce segment construction costs, which account for the largest proportion of shield TBM tunnel construction costs at about 35 to 40%. As part of this, this paper considers the changes in segment stress during tunnel construction and operation, tunnel external load conditions, etc. through analysis of long-term measurement data of shield TBMs in Japan, which has abundant experience in shield TBM construction, and compares and analyzes the differences between predicted values at the design stage and measured values during operation. Through this, we study improvements to ensure segment economic effici- ency at the shield TBM design stage.

Yongjun Lee ; Jin, kyu nam ; Youngjong Sim pp.477-488
초록보기
Abstract

The Korean government amended the Facilities Safety Act in 2018 to establish a performance-based maintenance system. This system is designed to comprehensively evaluate the safety, durability, and usage performance of facilities required to main- tain their function in use, and to establish corresponding maintenance plans. However, the current maintenance system of utility tunnels is managed by a safety-oriented evaluation method, which has limitations in conducting performance evaluations that consider durability and usage performance. Therefore, in this study, safety, durability, and usage performance items for utility tunnels were selected using the Delphi me- thod, and the weight of each item was calculated using the entropy weighting method. The results of this study are expected to be used in future performance evaluations of utility tunnels to support rational decision making when establishing maintenance plans.

Jae-Ho Jeong ; KIM SEUNG HYUN ; Hyun Il You ; Jong-ho Shin pp.489-506
초록보기
Abstract

Excavation of tunnels below the groundwater table changes the hydraulic boundary conditions, causing flow towards the excavation face. Inflow into a tunnel is generally influenced by pre-excavation grouting, shotcrete lining, drainage system implemen- tation, and the hydraulic deterioration of the drainage system. From the perspective of continuum theory, the groundwater inflow behavior due to excavation is very similar to the tunnel excavation behavior known as the convergence-confinement method. The groundwater inflow behavior due to tunnel excavation can be explained by the hydraulic convergence, while the behavior of shotcrete lining in limiting inflow can be inferred as hydraulic confinement. This study investigates the hydraulic convergence and confinement behavior using theoretical and numerical methods due to tunnelling. It is confirmed that the hydraulic convergence-confinement is exactly the same as the mechanical convergence-confinement concept. It is identified that the behavior is governed by the tunnel geometry, grout thickness and permeability, as well as the thickness and permeability of the support materials, such as shotcrete.

Lee,Gyu-Phil pp.507-518
초록보기
Abstract

In general, the tunnel portal is constructed with reinforced concrete. And the carbo- nation of concrete can cause reinforcement corrosion, causing function failure and tunnel destruction. To establish management system such as tunnel inspection and rehabilitation, distance between tunnel portal and coast, service life and traffic were selected as carbonation influencing factors and correlation analysis with carbonation depth for each influencing factor was performed.

Kibeom Kwon ; Byeonghyun Hwang ; Park, Hyeontae ; Ju-Young Oh ; HANGSEOK CHOI pp.519-532
초록보기
Abstract

Anomaly detection for the penetration rate of tunnel boring machines (TBMs) is crucial for effective risk management in TBM tunnel projects. However, previous machine learning models for predicting the penetration rate have struggled with imbalanced data between normal and abnormal penetration rates. This study aims to enhance the performance of machine learning-based anomaly detection for the penet- ration rate by utilizing a data augmentation technique to address this data imbalance. Initially, six input features were selected through correlation analysis. The lowest and highest 10% of the penetration rates were designated as abnormal classes, while the remaining penetration rates were categorized as a normal class. Two prediction models were developed, each trained on an original training set and an oversampled training set constructed using SMOTE (synthetic minority oversampling technique): an XGB (extreme gradient boosting) model and an XGB-SMOTE model. The predic- tion results showed that the XGB model performed poorly for the abnormal classes, despite performing well for the normal class. In contrast, the XGB-SMOTE model consistently exhibited superior performance across all classes. These findings can be attributed to the data augmentation for the abnormal penetration rates using SMOTE, which enhances the model’s ability to learn patterns between geological and operational factors that contribute to abnormal penetration rates. Consequently, this study demonstrates the effectiveness of employing data augmentation to manage imbalanced data in anomaly detection for TBM penetration rates.

Suhyeong Lee ; HANGSEOK CHOI ; Kibeom Kwon ; Dongjoon Lee ; Byeonghyun Hwang pp.533-549
초록보기
Abstract

Soil conditioning is a critical process when tunneling with an earth pressure balance (EPB) shield tunnel boring machine (TBM) to enhance performance. To determine the optimal additive injection conditions, it is important to understand the rheological pro- perties of conditioned soil, which is typically assessed using a rheometer. However, a rheometer cannot simulate the actual process of muck discharge in a TBM. Therefore, in this study, a scaled-down model of an 8-meter-class EPB shield TBM chamber and screw conveyor, reduced by a factor of 1:20, was fabricated and its applicability was evaluated through laboratory experiments. A lab-scale model experiment was con- ducted on artificial sandy soil using foam and polymer as additives. The experimental results confirmed that screw torque was consistent with trends observed in previous laboratory pressurized vane shear test data, establishing a positive proportional rela- tionship between screw torque and yield stress. The muck discharge efficiency accor- ding to foam injection ratio (FIR) showed similar values overall, but decreased slightly at 60% of FIR and when the polymer was added. In addition, the pressure distribution generated along the chamber and screw conveyor was assessed in a manner similar to the actual EPB TBM. This study demonstrates that the lab-scale screw conveyor model can be used to evaluate the shear properties and muck discharge efficiency.

Sang-Il Choi ; kimjunghun ; Suk-Min Kong ; Yoseph Byun ; Lee, Seong Won pp.551-561
초록보기
Abstract

Underground utility tunnels are spaces densely packed with various infrastructure facilities, such as power, telecommunications, and water supply and drainage systems, making internal environment management crucial. An investigation into accident cases and on-site demands in these tunnels revealed that while fires and floods are the most common types of incidents, the demand for real-time condensation prevention and response is frequent according to on-site managers. Condensation occurs due to the difference in humidity and temperature between the inside and outside of the tunnel. Frequent or prolonged condensation can lead to metal pipe corrosion, electrical failures, and reduced equipment lifespan. Therefore, this study developed a control algorithm and monitoring system to prevent condensation in underground utility tunnels. The proposed control algorithm estimates the likelihood of condensation in real-time based on the measured temperature and humidity and suggests appropriate responses for each stage to the managers. Finally, a practical condensation prevention monitoring system was built based on the developed algorithm, verifying the feasi- bility and applicability of this technology in the field.

(사)한국터널지하공간학회