바로가기메뉴

본문 바로가기 주메뉴 바로가기

ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

logo

  • P-ISSN1226-0657
  • E-ISSN2287-6081
  • KCI

LINEAR MAPPINGS, QUADRATIC MAPPINGS AND CUBIC MAPPINGS IN NORMED SPACES

LINEAR MAPPINGS, QUADRATIC MAPPINGS ANDCUBIC MAPPINGS IN NORMED SPACES

한국수학교육학회지시리즈B:순수및응용수학 / Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics, (P)1226-0657; (E)2287-6081
2003, v.10 no.3, pp.185-192
Park, Chun-Gil (Department of Mathematics, Chunganam National University)
Wee, Hee-Jung (Department of Mathematics, Chungnam National University)

Abstract

It is shown that every almost linear mapping <TEX>$h{\;}:{\;}X{\;}{\rightarrow}{\;}Y$</TEX> of a complex normed space X to a complex normed space Y is a linen. mapping when h(rx) = rh(x) (r > 0,<TEX>$r\;{\neq}\;1$</TEX) holds for all <TEX>$x{\;}{\in}{\;}X$</TEX>, that every almost quadratic mapping <TEX>$h{\;}:{\;}X{\;}{\rightarrow}{\;}Y$</TEX> of a complex normed space X to a complex normed space Y is a quadratic mapping when <TEX>$h(rx){\;}={\;}r^2h(x){\;}(r{\;}>{\;}0,r\;{\neq}\;1)$</TEX> holds for all <TEX>$x{\;}{\in}{\;}X$</TEX>, and that every almost cubic mapping <TEX>$h{\;}:{\;}X{\;}{\rightarrow}{\;}Y$</TEX> of a complex normed space X to a complex normed space Y is a cubic mapping when <TEX>$h(rx){\;}={\;}r^3h(x){\;}(r{\;}>{\;}0,r\;{\neq}\;1)$</TEX> holds for all <TEX>$x{\;}{\in}{\;}X$</TEX>.

keywords
liner mapping, quadratic mapping, cubic mapping, stability

한국수학교육학회지시리즈B:순수및응용수학