바로가기메뉴

본문 바로가기 주메뉴 바로가기

logo

  • P-ISSN3059-0604
  • E-ISSN3059-1309
  • KCI

AN EXTENSION OF THE FUGLEDGE-UTNAM THEOREM TO w-HYPONORMAL PERATORS

Journal of the Korean Society of Mathematical Education Series B: Theoretical Mathematics and Pedagogical Mathematics / Journal of the Korean Society of Mathematical Education Series B: Theoretical Mathematics and Pedagogical Mathematics, (P)3059-0604; (E)3059-1309
2003, v.10 no.4, pp.273-277
Cha, Hyung Koo

Abstract

The Fuglede-Putnam Theorem is that if A and B are normal operators and X is an operator such that AX = XB, then <TEX>$A^{\ast}= X<T^{\ast}B^{\ast}$</TEX>. In this paper, we show that if A is <TEX>$\omega$</TEX>-hyponormal and <TEX>$B^{\ast}$</TEX> is invertible <TEX>$\omega$</TEX>-hyponormal such that AX = XB for a Hilbert-Schmidt operator X, then <TEX>$A^{\ast}X = XB^{\ast}$</TEX>.

keywords
w-hyponormal, Hilbert-Schmidt operator

Journal of the Korean Society of Mathematical Education Series B: Theoretical Mathematics and Pedagogical Mathematics