바로가기메뉴

본문 바로가기 주메뉴 바로가기

logo

  • P-ISSN1226-0657
  • E-ISSN2287-6081
  • KCI

On a Quasi-Self-Similar Measure on a Self-Similar Set on the Way to a Perturbed Cantor Set

Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics / Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics, (P)1226-0657; (E)2287-6081
2004, v.11 no.1, pp.51-61
Baek, In-Soo

Abstract

We find an easier formula to compute Hausdorff and packing dimensions of a subset composing a spectral class by local dimension of a self-similar measure on a self-similar Cantor set than that of Olsen. While we cannot apply this formula to computing the dimensions of a subset composing a spectral class by local dimension of a quasi-self-similar measure on a self-similar set on the way to a perturbed Cantor set, we have a set theoretical relationship between some distribution sets. Finally we compare the behaviour of a quasi-self-similar measure on a self-similar Cantor set with that on a self-similar set on the way to a perturbed Cantor set.

keywords
Hausdorff dimension, packing dimension, Cantor set, distribution set

Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics