바로가기메뉴

본문 바로가기 주메뉴 바로가기

ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

logo

  • P-ISSN1226-0657
  • E-ISSN2287-6081
  • KCI

THE CENTRAL LIMIT THEOREMS FOR THE MULTIVARIATE LINEAR PROCESSES GENERATED BY NEGATIVELY ASSOCIATED RANDOM VECTORS

The Central Limit Theorems for the Multivariate Linear Processes Generated by Negatively Associated Random Vectors

한국수학교육학회지시리즈B:순수및응용수학 / Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics, (P)1226-0657; (E)2287-6081
2004, v.11 no.2, pp.139-147
Kim, Tae-Sung (Divsion of Mathematics and Informational Statistics and Institute of Basic Natural Science, Wonkwang University)
Ko, Mi-Hwa (Statistical research Center for Complex System, Seoul National University)
Ro, Hyeong-Hee (Department of InformationalStatistics, Wonkwang University)

Abstract

Let {<<TEX>$\mathds{X}_t$</TEX>} be an m-dimensional linear process of the form <TEX>$\mathbb{X}_t\;=\sumA,\mathbb{Z}_{t-j}$</TEX> where {<TEX>$\mathbb{Z}_t$</TEX>} is a sequence of stationary m-dimensional negatively associated random vectors with <TEX>$\mathbb{EZ}_t$</TEX> = <TEX>$\mathbb{O}$</TEX> and <TEX>$\mathbb{E}\parallel\mathbb{Z}_t\parallel^2$</TEX> < <TEX>$\infty$</TEX>. In this paper we prove the central limit theorems for multivariate linear processes generated by negatively associated random vectors.

keywords
negatively associated random vector, multivariate linear process, central limit theorem

한국수학교육학회지시리즈B:순수및응용수학