바로가기메뉴

본문 바로가기 주메뉴 바로가기

ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

logo

  • P-ISSN1226-0657
  • E-ISSN2287-6081
  • KCI

EVALUATIONS OF THE IMPROPER INTEGRALS <TEX>${\int}_0^{\infty}$</TEX>[sin<TEX>$^{2m}({\alpha}x)]/(x^{2n})dx$</TEX> AND <TEX>${\int}_0^{\infty}$</TEX>[sin<TEX>$^{2m+1}({\alpha}x)]/(x^{2n+1})dx$</TEX>

Evaluations of the Improper Integrals $\boldsymbol\int_0^\infty[\sin^{2m}(\alpha x)]/(x^{2n})dx$ and $\boldsymbol\int_0^\infty[\sin^{2m+1}(\alpha x)]/(x^{2n+1})dx$

한국수학교육학회지시리즈B:순수및응용수학 / Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics, (P)1226-0657; (E)2287-6081
2004, v.11 no.3, pp.189-196
Qi, Feng (Department of Applied Mathematics and Informatics, Research Institute of Applied Mathematics, Henan Polytechnoc University)
Luo, Qiu-Ming (Department of Mathematcis, Jiaozuo University)
Guo, Bai-Ni (Department of Applied Mathematics, and Informatics, Research Institute of Applied Mathematics, Henan Polytechnic University)

Abstract

In this article, using the L'Hospital rule, mathematical induction, the trigonometric power formulae and integration by parts, some integral formulae for the improper integrals <TEX>${\int}_0^{\infty}$</TEX>[sin<TEX>$^{2m}({\alpha}x)]/(x^{2n})dx$</TEX> AND <TEX>${\int}_0^{\infty}$</TEX>[sin<TEX>$^{2m+1}({\alpha}x)]/(x^{2n+1})dx$</TEX> are established, where m <TEX>$\geq$</TEX> n are all positive integers and <TEX>$\alpha$</TEX><TEX>$\neq$</TEX> 0.

keywords
evaluation, improper integral, integral formula, inequality, integration by parts, L′Hospital rule, mathematical induction

한국수학교육학회지시리즈B:순수및응용수학