ISSN : 1226-0657
Let <TEX>$\gamma$</TEX> be a <TEX>$C_2$</TEX> curve in the open unit disk <TEX>$\mathbb{D}</TEX>. Flinn and Osgood proved that <TEX>$K_{\mathbb{D}}(z,\gamma){\geq}1$</TEX> for all <TEX>$z{\in}{\gamma}$</TEX> if and only if the curve <TEX>${\Large f}o{\gamma}$</TEX> is convex for every convex conformal mapping <TEX>$\Large f$</TEX> of <TEX>$\mathbb{D}</TEX>, where <TEX>$K_{\mathbb{D}}(z,\;\gamma)$</TEX> denotes the hyperbolic curvature of <TEX>$\gamma$</TEX> at the point z. In this paper we establish a generalization of the Flinn-Osgood characterization for a curve with the hyperbolic curvature at least 1.