바로가기메뉴

본문 바로가기 주메뉴 바로가기

ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

logo

  • P-ISSN1226-0657
  • E-ISSN2287-6081
  • KCI

INVERTIBLE INTERPOLATION ON AX = Y IN ALGL

Invertible Interpolation on AX = Y in AlgL

한국수학교육학회지시리즈B:순수및응용수학 / Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics, (P)1226-0657; (E)2287-6081
2007, v.14 no.3, pp.161-166
Kang, Joo-Ho (DEPARTMENT OF MATHEMATICS, DAEGU UNIVERSITY)

Abstract

Given operators X and Y acting on a Hilbert space H, an interpolating operator is a bounded operator A such that AX = Y. An interpolating operator for n-operators satisfies the equation <TEX>$AX_i=Y_i$</TEX>, for i = 1,2,...,n. In this article, we showed the following: Let L, be a subspace lattice on a Hilbert space H and let X and Y be operators in B(H). Then the following are equivalent: (1) <TEX>$$sup\{\frac{{\parallel}E^{\bot}Yf{\parallel}}{{\overline}{\parallel}E^{\bot}Xf{\parallel}}\;:\;f{\epsilon}H,\;E{\epsilon}L}\}\;<\;{\infty},\;sup\{\frac{{\parallel}Xf{\parallel}}{{\overline}{\parallel}Yf{\parallel}}\;:\;f{\epsilon}H\}\;<\;{\infty}$$</TEX> and <TEX>$\bar{range\;X}=H=\bar{range\;Y}$</TEX>. (2) There exists an invertible operator A in AlgL such that AX=Y.

keywords
invertible interpolation problem, subspace lattice, AlgL

한국수학교육학회지시리즈B:순수및응용수학