ISSN : 3059-0604
A pebbling step on a graph consists of removing two pebbles from one vertex and placing one pebble on an adjacent vertex. The covering cover pebbling number of a graph is the smallest number of pebbles, such that, however the pebbles are initially placed on the vertices of the graph, after a sequence of pebbling moves, the set of vertices with pebbles forms a covering of G. In this paper we find the covering cover pebbling number of n-cube and diameter two graphs. Finally we give an upperbound for the covering cover pebbling number of graphs of diameter d.