ISSN : 3059-0604
This paper presents characterizations of the Weibull distribution by the independence of record values. We prove that <TEX>$X\;{\in}\;W\;EI ({\alpha})$</TEX>, if and only if <TEX>$\frac {X_{U(n+l)}} {X_{U(n+1)}\;+\;X_{U(n)}}$</TEX> and <TEX>$X_{U(n+1)}$</TEX> for <TEX>$n{\geq}1$</TEX> are independent or <TEX>$\frac {X_{U(n)}} {X_{U(n+1)}\;+\;X_{U(n)}}$</TEX> and <TEX>$X_{U(n+1)}$</TEX> for <TEX>$n{\geq}1$</TEX> are independent. And also we establish that <TEX>$X\;{\in}\;W\;EI({\alpha})$</TEX>, if and only if <TEX>$\frac {X_{U(n+1)}\;-\;X_{U(n)}} {X_{U(n+1)}\;+\;X_{U(n)}}$</TEX> and <TEX>$X_{U(n+1)}$</TEX> for <TEX>$n{\geq}1$</TEX> are independent.