JORDAN DERIVATIONS OF SEMIPRIME RINGS AND NONCOMMUTATIVE BANACH ALGEBRAS, I
JORDAN DERIVATIONS OF SEMIPRIME RINGS AND NONCOMMUTATIVE BANACH ALGEBRAS, I
한국수학교육학회지시리즈B:순수및응용수학 / Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics, (P)1226-0657; (E)2287-6081
2008, v.15 no.2, pp.179-201
Kim, Byung-Do
(DEPARTMENT OF MATHEMATICS, KANGNUNG NATIONAL UNIVERSITY)
Kim, Byung-Do.
(2008). JORDAN DERIVATIONS OF SEMIPRIME RINGS AND NONCOMMUTATIVE BANACH ALGEBRAS, I. 한국수학교육학회지시리즈B:순수및응용수학, 15(2), 179-201.
Abstract
Let A be a noncommutative Banach algebra. Suppose there exists a continuous linear Jordan derivation <TEX>$D\;:\;A{\rightarrow}A$</TEX> such that <TEX>$D(x)[D(x),x]^2\;{\in}\;rad(A)$</TEX> or <TEX>$[D(x), x]^2 D(x)\;{\in}\;rad(A)$</TEX> for all <TEX>$x\;{\in}\ A$</TEX>. In this case, we have <TEX>$D(A)\;{\subseteq}\;rad(A)$</TEX>.
- keywords
-
semiprime ring,
noncommutative Banach algebra,
Jacobson radical,
spectral radius,
Jordan drivation