바로가기메뉴

본문 바로가기 주메뉴 바로가기

ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

logo

  • P-ISSN1226-0657
  • E-ISSN2287-6081
  • KCI

SOME GENERALIZED HIGHER SCHWARZIAN OPERATORS

SOME GENERALIZED HIGHER SCHWARZIAN OPERATORS

한국수학교육학회지시리즈B:순수및응용수학 / Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics, (P)1226-0657; (E)2287-6081
2009, v.16 no.1, pp.147-154
Kim, Seong-A (Department of Mathematics Education, Dongguk University)

Abstract

Tamanoi proposed higher Schwarzian operators which include the classical Schwarzian derivative as the first nontrivial operator. In view of the relations between the classical Schwarzian derivative and the analogous differential operator defined in terms of Peschl's differential operators, we define the generating function of our generalized higher operators in terms of Peschl's differential operators and obtain recursion formulas for them. Our generalized higher operators include the analogous differential operator to the classical Schwarzian derivative. A special case of our generalized higher Schwarzian operators turns out to be the Tamanoi's operators as expected.

keywords
Schwarzian derivative, Peschl's invariant differential operators, higher Schwarzian operators

참고문헌

1.

2.

(1997). . Ann. Acad. Sci. Fenn. Math., 22, 425-444.

3.

(1969). . Duke Math. J., 36, 599-604.

4.

(1993). . J. Analysis, 1, 109-118.

5.

(2001). . J. Math. Kyoto Univ., 41, 285-302.

6.

(2007). . Michigan Math. J., 55, 459-479.

7.

(1955). . Rend. Sem. Mat. Messina, 1, 100-108.

8.

(2003). . J. Analyse Math., 90, 217-241.

9.

(1996). . Math. Ann., 305, 127-151.

10.

11.

(2007). . Ann. Acad. Sci. Fenn. Math., 32, 497-521.

12.

한국수학교육학회지시리즈B:순수및응용수학