바로가기메뉴

본문 바로가기 주메뉴 바로가기

ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

logo

  • P-ISSN1226-0657
  • E-ISSN2287-6081
  • KCI

A NOTE ON DIFFERENCE SEQUENCES

A NOTE ON DIFFERENCE SEQUENCES

한국수학교육학회지시리즈B:순수및응용수학 / Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics, (P)1226-0657; (E)2287-6081
2009, v.16 no.3, pp.255-258
Park, Jin-Woo (INFORMATION TECHNOLOGY MANPOWER DEVELOPMENT PROGRAM, KYUNGPOOK NATIONAL UNIVERSITY)

Abstract

It is well known that for a sequence a = (<TEX>$a_0,\;a_1$</TEX>,...) the general term of the dual sequence of a is <TEX>$a_n\;=\;c_0\;^n_0\;+\;c_1\;^n_1\;+\;...\;+\;c_n\;^n_n$</TEX>, where c = (<TEX>$c_0,...c_n$</TEX> is the dual sequence of a. In this paper, we find the general term of the sequence (<TEX>$c_0,\;c_1$</TEX>,... ) and give another method for finding the inverse matrix of the Pascal matrix. And we find a simple proof of the fact that if the general term of a sequence a = (<TEX>$a_0,\;a_1$</TEX>,... ) is a polynomial of degree p in n, then <TEX>${\Delta}^{p+1}a\;=\;0$</TEX>.

keywords
difference sequence, Pascal matrix

참고문헌

1.

2.

(1993). . Amer. Math. Monthly, 200, 372-376.

한국수학교육학회지시리즈B:순수및응용수학