바로가기메뉴

본문 바로가기 주메뉴 바로가기

logo

POSITIVE SOLUTION FOR SYSTEMS OF NONLINEAR SINGULAR BOUNDARY VALUE PROBLEMS ON TIME SCALES

Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics / Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics, (P)1226-0657; (E)2287-6081
2009, v.16 no.4, pp.327-344
Miao, Chunmei
Ji, Dehong
Zhao, Junfang
Ge, Weigao
Zhang, Jiani
  • Downloaded
  • Viewed

Abstract

In this paper, we deal with the following system of nonlinear singular boundary value problems(BVPs) on time scale <TEX>$\mathbb{T}$</TEX> <TEX>$$\{{{{{{x^{\bigtriangleup\bigtriangleup}(t)+f(t,\;y(t))=0,\;t{\in}(a,\;b)_{\mathbb{T}},}\atop{y^{\bigtriangleup\bigtriangleup}(t)+g(t,\;x(t))=0,\;t{\in}(a,\;b)_{\mathbb{T}},}}\atop{\alpha_1x(a)-\beta_1x^{\bigtriangleup}(a)=\gamma_1x(\sigma(b))+\delta_1x^{\bigtriangleup}(\sigma(b))=0,}}\atop{\alpha_2y(a)-\beta_2y^{\bigtriangleup}(a)=\gamma_2y(\sigma(b))+\delta_2y^{\bigtriangleup}(\sigma(b))=0,}}$$</TEX> where <TEX>$\alpha_i$</TEX>, <TEX>$\beta_i$</TEX>, <TEX>$\gamma_i\;{\geq}\;0$</TEX> and <TEX>$\rho_i=\alpha_i\gamma_i(\sigma(b)-a)+\alpha_i\delta_i+\gamma_i\beta_i$</TEX> > 0(i = 1, 2), f(t, y) may be singular at t = a, y = 0, and g(t, x) may be singular at t = a. The arguments are based upon a fixed-point theorem for mappings that are decreasing with respect to a cone. We also obtain the analogous existence results for the related nonlinear systems <TEX>$x^{\bigtriangledown\bigtriangledown}(t)$</TEX> + f(t, y(t)) = 0, <TEX>$y^{\bigtriangledown\bigtriangledown}(t)$</TEX> + g(t, x(t)) = 0, <TEX>$x^{\bigtriangleup\bigtriangledown}(t)$</TEX> + f(t, y(t)) = 0, <TEX>$y^{\bigtriangleup\bigtriangledown}(t)$</TEX> + g(t, x(t)) = 0, and <TEX>$x^{\bigtriangledown\bigtriangleup}(t)$</TEX> + f(t, y(t)) = 0, <TEX>$y^{\bigtriangledown\bigtriangleup}(t)$</TEX> + g(t, x(t)) = 0 satisfying similar boundary conditions.

keywords
singular boundary value problem, nonlinear system, time scale, fixed point theorem

Reference

1.

2.

(2001). . J. Differential Equations, 175, 393-414.

3.

(2007). . Nonlinear Anal., 67, 368-381.

4.

(1989). . J. Differential Equations, 79, 62-78.

5.

(2005). . J. Differential Equations, 211, 282-302.

6.

(2004). . Comput. Appl. Math., 47, 683-688.

7.

(1976). . SIAM Rev., 18, 620-709.

8.

(1999). . J. Math. Anal. Appl., 240, 433-445.

9.

(2007). . J. Math. Anal. Appl., 325, 517-528.

10.

(2009). . J. Comput. Appl. Math., 223(1), 291-303.

11.

(1990). . Ann. Mat. Pura Appl., 157, 1-25.

12.

(2004). . J. Math. Anal. Appl, 290, 35-54.

13.

(1997). . Nonlinear Anal., 28, 1429-1438.

14.

(2007). . Rocky Mountain J. Math., 137(4), 1229-1250.

15.

(2007). . J. Differential Equations, 239, 196-212.

16.

(2004). . J. Math. Anal. Appl., 295, 378-391.

17.

18.

(2008). . Nonlinear Anal., 69, 2833-2842.

19.

(1998). . J. Differential Equations, 143, 60-95.

20.

(2008). . Appl. Math. Comput., 200(1), 352-368.

21.

(1990). . Mathematical Research, 59, 9-20.

22.

(2006). . J. Comput. Appl. Math., 197, 156-168.

23.

24.

(1990). . Result. Math., 18, 18-56.

25.

26.

(1998). . J. Differential Equations, 148, 407-421.

27.

(2006). . J. Math. Anal. Appl., 324, 118-133.

Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics