ISSN : 1226-0657
In this paper, we study the root system of rank 2 symmetric hyperbolic Kac-Moody algebras. We give the sufficient conditions for existence of imaginary roots of square length -2k (<TEX>$k\;{\in}\;\mathbb{Z}$</TEX>>0). We also give several relations between the roots on g(A).
(2004). . J. Lie Theory, 14, 11-23.
MOODY. (1979). . Advances in Mathematics, 33(2), 144-160. 10.1016/S0001-8708(79)80003-1.
(1968). . J. Algebra, 10, 210-230.
Kang, S.J.;Melville, D.J.. (1994). Root Multiplicities of the Kac-Moody Algebras HA<SUP>(1)</SUP><SUB>n</SUB>. Journal of Algebra, 170(1), 277-299. 10.1006/jabr.1994.1338.
(1995). . Nagoya. Math. J., 140, 41-75.
Benkart, G.;Kang, S.J.;Misra, K.C.. (1993). Graded Lie Algebras of Kac-Moody Type. Advances in Mathematics, 97(2), 154-190. 10.1006/aima.1993.1005.
Feingold, Alex Jay. (1980). A Hyperbolic GCM Lie Algebra and the Fibonacci Numbers. Proceedings of the American Mathematical Society, 80(3), 379-385. 10.1090/S0002-9939-1980-0580988-6.